精英家教网 > 初中数学 > 题目详情
关于x的一元二次方程x2-(2m-3)x+m2+1=0当m
 
时,方程有两个不相等的实数根;当m
 
时,此方程没有实数根;当m
 
时,此方程有两个相等的实数根.
分析:先计算△,要使方程有两个不相等的实数根,则△>0;要使方程没有实数根,则△<0;要使方程有两个相等的实数根,则△=0;分别解不等式或方程即可得到答案.
解答:解:∵△=(2m-3)2-4×1×(m2+1)=-12m+5,当△=-12m+5>0,即m<
5
12
时,方程有两个不相等实根;
当△=-12m+5<0,即m>
5
12
时,方程无实数根;
当△=-12m+5=0,即m=
5
12
时,方程有两个相等的实数根.
故答案为m<
5
12
;m
5
12
;m=
5
12
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•北仑区二模)若关于x的一元二次方程a(x+m)2=3两个实根为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点橫坐标分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是关于x的一元二次方程,则m=
65
2
65
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是
a<4
a<4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州一模)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:
已知x1,x2是一员二次方程(m-3)x2+2mx+m=0的两个实数根.
(1)是否存在实数m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,请你说明理由;
(2)若|x1-x2|=
3
,求m的值和此时方程的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案