·ÖÎö £¨1£©Á¬½ÓCQ¿ÉÖª¡÷PCQΪµÈ±ßÈý½ÇÐΣ¬¹ýQ×÷QD¡ÍPC£¬ÀûÓõȱßÈý½ÇÐεÄÐÔÖÊ¿ÉÇóµÃCDºÍQDµÄ³¤£¬Ôò¿ÉÇóµÃQµã×ø±ê£»Éè³öMµãµÄ×ø±ê£¬ÀûÓÃP¡¢Q×ø±êÖ®¼äµÄ¹Øϵ¿ÉµÃµ½µãMµÄ·½³Ì£¬¿ÉÇóµÃMµãµÄ×ø±ê£»
£¨2£©¢Ù¿ÉÉèA£¨t£¬$\frac{\sqrt{3}}{2}$t£©£¬ÀûÓÃT±ä»»¿ÉÇóµÃBµã×ø±ê£¬ÀûÓôý¶¨ÏµÊýʾ¿ÉÇóµÃÖ±ÏßOBµÄº¯Êý±í´ïʽ£»
¢Ú·½·¨1¡¢ÓÉ´ý¶¨ÏµÊýʾ¿ÉÇóµÃÖ±ÏßABµÄ½âÎöʽ£¬¿ÉÇóµÃDµã×ø±ê£¬Ôò¿ÉÇóµÃAB¡¢ADµÄ³¤£¬¿ÉÇóµÃ¡÷OABµÄÃæ»ýÓë¡÷OADµÄÃæ»ýÖ®±È£®
·½·¨2¡¢ÏÈÈ·¶¨³ö¡÷BOD±È¡÷OAD£¨BÓëAºá×ø±ê¾ø¶ÔÖµµÄ±È¸ü¼òµ¥£©µÃ³öÃæ»ý¹Øϵ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º
£¨1£©Èçͼ1£¬Á¬½ÓCQ£¬¹ýQ×÷QD¡ÍPCÓÚµãD£¬
ÓÉÐýתµÄÐÔÖʿɵÃPC=PQ£¬ÇÒ¡ÏCPQ=60¡ã£¬
¡à¡÷PCQΪµÈ±ßÈý½ÇÐΣ¬
¡ßP£¨a£¬b£©£¬
¡àOC=a£¬PC=b£¬
¡àCD=$\frac{1}{2}$PC=$\frac{1}{2}$b£¬DQ=$\frac{\sqrt{3}}{2}$PQ=$\frac{\sqrt{3}}{2}$b£¬
¡àQ£¨a+$\frac{\sqrt{3}}{2}$b£¬$\frac{1}{2}$b£©£»
ÉèM£¨x£¬y£©£¬ÔòNµã×ø±êΪ£¨x+$\frac{\sqrt{3}}{2}$y£¬$\frac{1}{2}$y£©£¬
¡ßN£¨6£¬-$\sqrt{3}$£©£¬
¡à$\left\{\begin{array}{l}{x+\frac{\sqrt{3}}{2}y=6}\\{\frac{1}{2}y=-\sqrt{3}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=9}\\{y=-2\sqrt{3}}\end{array}\right.$£¬
¡àM£¨9£¬-2$\sqrt{3}$£©£»
¹Ê´ð°¸Îª£º£¨a+$\frac{\sqrt{3}}{2}$b£¬$\frac{1}{2}$b£©£»£¨9£¬-2$\sqrt{3}$£©£»
£¨2£©¢Ù¡ßAÊǺ¯Êýy=$\frac{\sqrt{3}}{2}$xͼÏóÉÏÒìÓÚÔµãOµÄÈÎÒâÒ»µã£¬
¡à¿ÉÉèA£¨t£¬$\frac{\sqrt{3}}{2}$t£©£¬
¡àt+$\frac{\sqrt{3}}{2}$¡Á$\frac{\sqrt{3}}{2}$t=$\frac{7}{4}$t£¬$\frac{1}{2}$¡Á$\frac{\sqrt{3}}{2}$t=$\frac{\sqrt{3}}{4}$t£¬
¡àB£¨$\frac{7}{4}$t£¬$\frac{\sqrt{3}}{4}$t£©£¬
ÉèÖ±ÏßOBµÄº¯Êý±í´ïʽΪy=kx£¬Ôò$\frac{7}{4}$tk=$\frac{\sqrt{3}}{4}$t£¬½âµÃk=$\frac{\sqrt{3}}{7}$£¬
¡àÖ±ÏßOBµÄº¯Êý±í´ïʽΪy=$\frac{\sqrt{3}}{7}$x£»
¢Ú·½·¨1¡¢ÉèÖ±ÏßAB½âÎöʽΪy=k¡äx+b£¬
°ÑA¡¢B×ø±ê´úÈë¿ÉµÃ$\left\{\begin{array}{l}{tk¡ä+b=\frac{\sqrt{3}}{2}t}\\{\frac{7}{4}tk¡ä+b=\frac{\sqrt{3}}{4}t}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k¡ä=-\frac{\sqrt{3}}{3}}\\{b=\frac{5\sqrt{3}}{6}t}\end{array}\right.$£¬
¡àÖ±ÏßAB½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+$\frac{5\sqrt{3}}{6}$t£¬
¡àD£¨0£¬$\frac{5\sqrt{3}}{6}$t£©£¬ÇÒA£¨t£¬$\frac{\sqrt{3}}{2}$t£©£¬B£¨$\frac{7}{4}$t£¬$\frac{\sqrt{3}}{4}$t£©£¬
¡àAB=$\sqrt{£¨\frac{7}{4}t-t£©^{2}+£¨\frac{\sqrt{3}}{4}t-\frac{\sqrt{3}}{2}t£©^{2}}$=$\frac{\sqrt{3}}{2}$|t|£¬AD=$\sqrt{{t}^{2}+£¨\frac{\sqrt{3}}{2}t-\frac{5\sqrt{3}}{6}t£©^{2}}$=$\frac{2\sqrt{3}}{3}$|t|£¬
¡à$\frac{{S}_{¡÷OAB}}{{S}_{¡÷OAD}}$=$\frac{AB}{AD}$=$\frac{\frac{\sqrt{3}}{2}|t|}{\frac{2\sqrt{3}}{3}|t|}$=$\frac{3}{4}$£®
·½·¨2¡¢ÓÉ£¨1£©Öª£¬A£¨t£¬$\frac{\sqrt{3}}{2}$t£©£¬B£¨$\frac{7}{4}$t£¬$\frac{\sqrt{3}}{4}$t£©£¬
¡à$\frac{{S}_{¡÷BOD}}{{S}_{¡÷AOD}}=\frac{\frac{1}{2}OD¡Á|{x}_{B}|}{\frac{1}{2}OD¡Á|{x}_{A}|}$=$\frac{|{x}_{B}|}{|{x}_{A}|}$=$\frac{7}{4}$£¬
¡ß¡÷AOB¡¢¡÷AODºÍ¡÷BODµÄ±ßAB¡¢ADºÍBDÉϵĸßÏàͬ£¬
¡à$\frac{{S}_{¡÷OAB}}{{S}_{¡÷OAD}}$=$\frac{3}{4}$£®
µãÆÀ ±¾ÌâΪһ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°µÈ±ßÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨¡¢Èý½ÇÐεÄÃæ»ý¼°·½³Ì˼ÏëµÈ֪ʶ£¬Àí½âÌâÄ¿ÖеÄT±ä»»ÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | x¡Ù2 | B£® | x¡Ý2 | C£® | x¡Ü2 | D£® | x£¾2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com