分析 (1)利用勾股定理即可解决问题;
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
解答 解:(1)AB=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$.
故答案为$\sqrt{17}$.
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:3,
△PAB的面积=$\frac{1}{2}$平行四边形ABME的面积,△PBC的面积=$\frac{1}{2}$平行四边形CDNB的面积,△PAC的面积=△PNG的面积=$\frac{1}{2}$△DGN的面积=$\frac{1}{2}$平行四边形DEMG的面积,
∴S△PAB:S△PBC:S△PCA=1:2:3.
点评 本题考查作图-应用与设计、勾股定理、三角形的面积等知识,解题的关键是利用数形结合的思想解决问题,求出△PAB,△PBC,△PAC的面积,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com