分析 (1)连接OF,由题意,可得∠BOF=∠COF=90°,根据切线的性质,可得∠OFE=90°,利用平行线的判定,即可证明;
(2)过点B作BG⊥DE于点G,可得四边形BGFO是正方形,由BC:DF=4:3,可得BG:DG=2:1,利用锐角三角函数即可求得tan∠ABC.
解答 解:(1)连接OF,
∵点F为$\widehat{BC}$的中点,
∴$\widehat{BF}=\widehat{CF}$,
∴∠BOF=∠COF,
∵BC为直径,
∴∠BOF+∠COF=180°,
∴∠BOF=∠COF=90°,
∵过F点的切线交于D、E两点,
∴OF⊥DE,
∴∠OFE=90°,
∴∠BOF=∠OFE,
∴BC∥DE;
(2)过点B作BG⊥DE于点G,
∴四边形BGFO是正方形,
∴BG=OF=GF=OB,
∵BC:DF=4:3,
∴BG:DG=2:1,
由(1)可知,tan∠ABC=tan∠BDG=$\frac{BG}{DG}$=2.
点评 本题主要考查切线的性质及解直角三角形,解决第(1)题,需要灵活运用切线的性质及平行线的性质和判定定理,(2)题能根据BC:DF=4:3,得到BG:DG=2:1是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
第1列 | 第2列 | 第3列 | 第4列 | |
第1行 | 1 | 2 | 3 | |
第2行 | 6 | 5 | 4 | |
第3行 | 7 | 8 | 9 | |
第4行 | 12 | 11 | 10 | |
… |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5对 | B. | 6对 | C. | 8对 | D. | 10对 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com