精英家教网 > 初中数学 > 题目详情
在等腰△ABC,AB=AC,分别过点B、C作两腰的平行线,经过点A的直线与两平行线分别交于点D、E,连接DC,BE,DC与AB边相交于点M,BE与AC边相交于点N.
(1)如图1,若DE∥CB,写出图中所有与AM相等的线段,并选取一条给出证明.
(2)如图2,若DE与CB不平行,在(1)中与AM相等的线段中找出一条仍然与AM相等的线段,并给出证明.

【答案】分析:(1)由AD∥BC,BD∥AC,AE∥BC,AB∥BC,易得四边形ACBD为平行四边形与四边形ABCE是平行四边形,则可求得:AM=AN=BM=CN;
(2)首先延长DB、EC交于点P,由BD∥AC,AB∥EC,可得四边形ABPC为平行四边形,又由AB=AC,即可证得:?ABPC是菱形,可得AB=BP=PC=CA,又可证得:△EAC∽△EDP与△AMC∽△PCD,根据相似三角形的对应边成比例,则可证得:CN=AM.
解答:解:(1)AM=AN=BM=CN;
证明:∵AD∥BC,BD∥AC,
∴四边形ACBD为平行四边形,
∴AM=BM.
(其它线段的证明:∵AE∥BC,AB∥BC,∴四边形ABCE是平行四边形,∴AN=CN=AC,∵AB=AC,∴AN=CN=BM=AM)

(2)CN=AM.
证明:延长DB、EC交于点P,
∵BD∥AC,AB∥EC,
∴四边形ABPC为平行四边形,
∵AB=AC,
∴?ABPC是菱形,
∴AB=BP=PC=CA,
∵BD∥AC,
∴△EAC∽△EDP,

同理:

∵四边形ABPC是平行四边形,
∴∠BAC=∠P,
∵AC∥DP,
∴∠ACD=∠CDP,
∴△AMC∽△PCD,


∵AC=BP,
∴AM=CN.
点评:此题考查了平行四边形,菱形的判定与性质,以及相似三角形的判定与性质.此题综合性很强,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在等腰△ABC,AB=AC,分别过点B、C作两腰的平行线,经过点A的直线与两平行线分别交于点D、E,连接DC,BE,DC与AB边相交于点M,BE与AC边相交于点N.
(1)如图1,若DE∥CB,写出图中所有与AM相等的线段,并选取一条给出证明.
(2)如图2,若DE与CB不平行,在(1)中与AM相等的线段中找出一条仍然与AM相等的线段,并给出证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,OP与AC相交与点M,则下列结论:
①点O是△PBC的外心;②△MAO∽△MPC;③AC=AO+AP;④S△ABC=
4
5
S四边形AOCP
其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源:2013-2014学年黑龙江哈尔滨市道外区九年级上期末调研测试数学试卷(解析版) 题型:解答题

如图:在等腰ABC,AB=ACADBC,垂足为D,以AD为直径作00分别交ABACEF.

(1)求证:BE=CF

(2)ADEF相交于G,若EF=8BC=10,0的半径.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在等腰△ABC,AB=AC,分别过点B、C作两腰的平行线,经过点A的直线与两平行线分别交于点D、E,连接DC,BE,DC与AB边相交于点M,BE与AC边相交于点N.
(1)如图1,若DE∥CB,写出图中所有与AM相等的线段,并选取一条给出证明.
(2)如图2,若DE与CB不平行,在(1)中与AM相等的线段中找出一条仍然与AM相等的线段,并给出证明.

查看答案和解析>>

同步练习册答案