精英家教网 > 初中数学 > 题目详情
(2012•舟山)如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于(  )
分析:由BC与⊙0相切于点B,根据切线的性质,即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度数,然后由OA=OB,利用等边对等角的知识,即可求得∠A的度数.
解答:解:∵BC与⊙0相切于点B,
∴OB⊥BC,
∴∠OBC=90°,
∵∠ABC=70°,
∴∠OBA=∠OBC-∠ABC=90°-70°=20°,
∵OA=OB,
∴∠A=∠OBA=20°.
故选B.
点评:此题考查了切线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用,注意圆的切线垂直于经过切点的半径定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于(  )米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知△ABC中,∠CAB=∠B=30°,AB=2
3
,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知⊙O的半径为2,弦AB⊥半径OC,沿AB将弓形ACB翻折,使点C与圆心O重合,则月牙形(图中实线围成的部分)的面积是
4
3
π+2
3
4
3
π+2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:
AG
AB
=
FG
FB
;②∠ADF=∠CDB;③点F是GE的中点;④AF=
2
3
AB;⑤S△ABC=5S△BDF
其中正确结论的序号是
①②④
①②④

查看答案和解析>>

同步练习册答案