精英家教网 > 初中数学 > 题目详情
如图所示,在直角梯形OABC,CB,OA,∠OAB=90°,点O为坐标原点,点A在x半精英家教网轴上,对角线OB,AC相交于点M,OA=AB=4,OA=2CB.
(1)线段OB的长为
 
,点C的坐标为
 

(2)求△OCM的面积;
(3)求过O,A,C三点的抛物线的解析式;
(4)若点E在(3)的抛物线的对称轴上,点F为该抛物线上的点,且以A,O,F,E四点为顶点的四边形为平行四边形,求点F的坐标.
分析:(1)易证得△OAB是等腰Rt△,已知了直角边的长,即可根据直角三角形的性质求出斜边OB的长;已知了OA=2BC,即可得到C点的横坐标,而B、C的纵坐标相同,由此可求出C点的坐标;
(2)易证得△BCM∽△OAM,且OA=2BC,根据相似三角形的对应边成比例可得AM=2CM;由此可证得△OAM的面积是△OCM的2倍,即△OCM的面积是△OAC的
1
3
,因此只需求出△OAC的面积即可;
(3)用待定系数法即可求出经过O、A、C三点的函数解析式;
(4)根据(3)得到的抛物线的解析式,即可求出其对称轴方程;若以A,O,F,E四点为顶点的四边形为平行四边形,应分成两种情况考虑:
①E点在x轴的下方,F在x轴的上方;此时四边形OFAE的对角线OA、EF互相平分,四边形OFAE是平行四边形,此时F与C点重合;
②E、F同时在x轴下方;此时四边形OAFE(或OAEF)以OA为边,根据平行四边形的对边互相平行且相等知:OA=EF,由此可求出F点的横坐标,将其代入抛物线的解析式中,即可求得F点的坐标.
解答:解:(1)在Rt△OAB中,OA=AB=4,所以△AOB是等腰直角三角形,
∴OB=
OA2+AB2
=
42+42
=4
2
,B(4,4);
∵OA=2BC,则C点位于OA的垂直平分线上,
∴C(2,4);

(2)在直角梯形OABC中,OA=AB=4,∠OAB=90°,
∵CB∥OA,
∴△OAM∽△BCM,(3分)
又∵OA=2BC,
∴AM=2CM,CM=
1
3
AC,(4分)
所以S△OCM=
1
3
S△OAC=
1
3
×
1
2
×4×4=
8
3
.(5分)
(注:另有其它解法同样可得结果,正确得本小题满分.)

(3)设抛物线的解析式为y=ax2+bx+c(a≠0),
由抛物线的图象经过点O(0,0),A(4,0),C(2,4),
所以
c=0
16a+4b+c=0
4a+2b+c=4
,(6分)
解这个方程组得a=-1,b=4,c=0,(7分)
所以抛物线的解析式为:
y=-x2+4x;(8分)

精英家教网(4)∵抛物线y=-x2+4x的对称轴是CD,x=2,
①当点E在x轴的上方时,CE和OA互相平分则可知四边形OEAC为平行四边形,此时点F和点C重合,
点F的坐标即为点F(2,4);(9分)
②当点E在x轴的下方,点F在对称轴x=2的右侧,存在平行四边形AOEF,OA∥EF,且OA=EF,
此时点F的横坐标为6,
将x=6代入y=-x2+4x,可得y=-12.
所以F(6,-12). (11分)
同理,点F在对称轴x=2的左侧,存在平行四边形OAEF,OA∥FE,且OA=FE,
此时点F的横坐标为-2,
将x=-2代入y=-x2+4x,可得y=-12,
所以F(-2,-12). (12分)
综上所述,点F的坐标为(2,4),(6,-12),(-2,-12).(12分)
点评:此题主要考查了解直角三角形、三角形面积的求法、二次函数解析式的确定以及平行四边形的判定等知识,同时还考查了分类讨论的数学思想,综合性强,难度偏大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图所示,在直角梯形ABCD中,AD∥BC,AD=24cm,AB=8cm,BC=26cm,动点P从A点开始沿AD边向D以1cm/s的速度运动,动点Q从C点开始沿CB边向B以3cm/s的速度运动.P,Q分别从A,C同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t(s),t分别为何值时,四边形PQCD是平行四边形?等腰梯形?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AD=20,BC=10,则∠A和∠D分别是(  )
A、30°,150°B、45°,135°C、120°,60°D、150°,30°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四边形CGEF的面积S关于x的函数表达式和x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在直角梯形ABCD中,AB=2,P是边AB的中点,∠PDC=90°,问梯形ABCD面积的最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•山西模拟)如图所示,在直角梯形ABCD中,AB∥CD,点E为AB的中点,点F为BC的中点,AB=4,EF=2,∠B=60°,则AD的长为
2
3
2
3

查看答案和解析>>

同步练习册答案