精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠A=90°.
(1)利用直尺和圆规,作线段的垂直平分线,分别交BC、AB于点D、E;(保留作图痕迹,不写作法)
(2)根据(1)中所画图形,求证:BE2=AC2+AE2
分析:(1)根据垂直平分线的作法直接作出BC的垂直平分线即可;
(2)根据垂直平分线的性质得出CE=BE,进而利用勾股定理即可证明.
解答:解:(1)如图所示:直线DE即为所求作的图形;


(2)连接CE,
∵DE是BC的垂直平分线,
∴BE=EC,
∵∠A=90°,
∴在Rt△ACE中,BE2=CE2=AC2+AE2
点评:此题主要考查了垂直平分线的作法,以及垂直平分线的性质和勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案