分析 (1)根据“等对角四边形”的定义,当四边形ABCD是“等对角四边形”时,可分两种情况进行讨论:①若∠A=∠C,∠B≠∠D,则∠C=70°,再利用四边形内角和定理求出∠D;②若∠B=∠D,∠A≠∠C,则∠D=80°,再利用四边形内角和定理求出∠C;
(2)根据直角三角形斜边上的中线等于斜边的一半得出AD=DB=DC,由等边对等角得出∠DCB=∠B,再由∠B+∠ACD=∠DCB+∠ACD=90°,∠CED+∠ACD=90°,利用同角的余角相等得出∠CED=∠B,又∠ECB≠∠EDB,根据“等对角四边形”的定义,即可证明四边形BCED是“等对角四边形”;
(3)根据“等对角四边形”的定义,当四边形CBDE为“等对角四边形”时,可分两种情况进行讨论:①若∠B=∠DEC,∠BCE≠∠BDE,根据AAS证明△CDE≌△CDB,利用全等三角形对应边相等得出EC=BC=3,那么AE=AC-EC=1;②若∠BCE=∠BDE=90°,∠B≠∠DEC,先利用勾股定理求出AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,再根据角平分线定理得出$\frac{AD}{BD}$=$\frac{AC}{BC}$=$\frac{4}{3}$,求出AD=$\frac{4}{7}$AB=$\frac{20}{7}$,再证明△ADE∽△ACB,根据相似三角形对应边成比例即可求出AE.
解答 (1)解:①若∠A=∠C,∠B≠∠D,
则∠C=70°,∠D=360°-70°-70°-80°=140°;
②若∠B=∠D,∠A≠∠C,
则∠D=80°,∠C=360°-80°-80°-70°=130°;
(2)证明:如图1,在Rt△ABC中,
∵CD为斜边AB边上的中线,
∴AD=DB=DC,
∴∠DCB=∠B,
∵∠ACB=90°,
∴∠DCB+∠ACD=90°,
∴∠B+∠ACD=90°.
∵DE⊥CD,
∴∠CED+∠ACD=90°,
∴∠CED=∠B,
且∠ECB≠∠EDB,
∴四边形BCED是“等对角四边形”;
(3)解:①若∠B=∠DEC,∠BCE≠∠BDE,如图2.
在△CDE与△CDB中,
$\left\{\begin{array}{l}{∠DEC=∠B}\\{∠DCE=∠DCB}\\{CD=CD}\end{array}\right.$,
∴△CDE≌△CDB,
∴EC=BC=3,
∴AE=AC-EC=4-3=1;
②若∠BCE=∠BDE=90°,∠B≠∠DEC,如图3.
∵在Rt△ACB中,∠C=90°,AC=4,BC=3,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∵CD平分∠ACB,
∴$\frac{AD}{BD}$=$\frac{AC}{BC}$=$\frac{4}{3}$,
∴AD=$\frac{4}{7}$AB=$\frac{20}{7}$.
在△ADE与△ACB中,
$\left\{\begin{array}{l}{∠A=∠A}\\{∠ADE=∠ACB=90°}\end{array}\right.$,
∴△ADE∽△ACB,
∴$\frac{AE}{AB}$=$\frac{AD}{AC}$,即$\frac{AE}{5}$=$\frac{\frac{20}{7}}{4}$,
∴AE=$\frac{25}{7}$.
综上所述,线段AE的长为1或$\frac{25}{7}$.
故答案为1或$\frac{25}{7}$.
点评 本题是四边形综合题,主要考查了四边形内角和定理,直角三角形、等腰三角形的性质,全等三角形、相似三角形的判定与性质,余角的性质,勾股定理,理解“等对角四边形”的定义并且利用分类讨论思想是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 正数 | B. | 负数 | C. | 非正数 | D. | 不能确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
居民户数 | 1 | 5 | 3 | 1 |
月用水量(米3/户) | 10 | 15 | 20 | 25 |
A. | 15 | B. | 17.5 | C. | 20 | D. | 20 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com