精英家教网 > 初中数学 > 题目详情
3.已知,如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC,CE∥DB.
求证:四边形OBEC是菱形.

分析 先由已知条件证明四边形OBEC是平行四边形,再由矩形的性质得出OB=OC,由菱形的判定方法即可得出结论.

解答 证明:∵BE∥AC,CE∥DB,
∴四边形OBEC是平行四边形,
∵四边形ABCD是矩形,
∴OC=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC=BD,
∴OB=OC,
∴四边形OBEC是菱形.

点评 本题考查了矩形的性质、平行四边形的判定、菱形的判定;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.在三角形的三个外角(一个顶点只取一个外角)中,钝角的个数至少是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.化简或计算:
(1)$\frac{b}{a-b}$+$\frac{a}{a+b}$+$\frac{2ab}{{a}^{2}-{b}^{2}}$      
(2)($\frac{x+1}{x-1}$+$\frac{1}{{x}^{2}-2x+1}$)÷$\frac{x}{x-1}$
(3)$\sqrt{12}$-$\sqrt{18}$-$\sqrt{0.5}$+$\sqrt{\frac{1}{3}}$;          
(4)$\frac{1}{3}$$\sqrt{{x}^{2}y}$×(-$\frac{1}{4}$$\sqrt{\frac{{y}^{2}}{x}}$)÷(-$\frac{1}{6}$$\sqrt{{x}^{2}}y$)
(5)解方程:$\frac{1}{x-3}$+2=$\frac{x-4}{3-x}$.        
(6)解方程:$\frac{1}{y-1}$+$\frac{2}{{y}^{2}+2y-3}$=$\frac{y-1}{{y}^{2}-9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简,再求值:-$\frac{3}{2}$x-4($\frac{1}{2}$x-$\frac{1}{6}$y2)+($\frac{1}{2}$x+$\frac{1}{3}$y2),其中x=-2,y=$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,∠ABE=15°,∠BAD=30°,则∠BED的度数是45度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算题
(1)(xy22-2x(xy4
(2)(-2x-1)(3x-2)
(3)解不等式2x-4≤3(2-x)并把解集在数轴上表示出来
(4)解不等式组$\left\{\begin{array}{l}{x+3>0}\\{3(x-1)≤2x-1}\end{array}\right.$并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,矩形ABCD的对角线相交于O点,PD∥AC,PC∥BD,PD、PC相交于P点.猜想:四边形PCOD是菱形吗?并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)$\frac{2a}{{a}^{2}-{b}^{2}}$+$\frac{1}{b-a}$                    
(2)1-$\frac{a-3}{a}$÷$\frac{{a}^{2}-2a-3}{{a}^{2}+2a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.“蛋圆”被平行于y轴的直线截得的最大弦长6.
(1)写出“蛋圆”抛物线部分的解析式及自变量的取值范围;
(2)①“蛋圆”被y轴的直线截得的弦CD的长为$\sqrt{3}$+3;
②过点C的“蛋圆”切线交x轴于G,求G点的坐标;
(3)P点在线段OB上运动,过P作x轴的垂线,交抛物线于点E,交BD于点F,连结DE和BE后,是否存在这样的点E,使△BDE的面积最大?若存在,请求出点E的坐标和△BDE面积的最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案