精英家教网 > 初中数学 > 题目详情

用反证法证明:一个三角形中不能有两个角是直角.

答案:
解析:

  分析:按反证法证明命题的步骤,首先要假设结论“∠A,∠B,∠C中不能有两个角是直角”不成立,即它的反面“∠A,∠B,∠C中有两个角是直角”成立.然后,从这个假定推证下去,推出与“三角形内角和等于180°”矛盾.

  已知△ABC.求证∠A,∠B,∠C中不能有两个角是直角.

  证明:假设∠A,∠B,∠C中有两个角是直角,

  不妨设∠A=∠B=90°.

  ∴∠A+∠B+∠C=90°+90°+∠C>180°.

  这与三角形内角和定理矛盾,则∠A=∠B=90°不成立.

  所以一个三角形中不能有两个角是直角.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、用反证法证明:“三角形三内角中至少有一个角不大于60°”时,第一步应是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

16、用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设
三角形的三个内角都小于60°

查看答案和解析>>

科目:初中数学 来源: 题型:

16、用反证法证明命题“一个三角形的三个内角中,至多有一个钝角”的第一步应假设
一个三角形的三个内角中,至少有两个钝角

查看答案和解析>>

科目:初中数学 来源: 题型:

用反证法证明“三角形的三个外角中至少有两个钝角”时,假设正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

用反证法证明“△ABC的三个内角中至少有一个内角大于或等于60°”,第一步应假设(  )
A、三角形的三个内角都小于60°B、三角形的三个内角中至多有一个角大于或等于60°C、三角形的兰个内角中有两个角大于或等于60°D、三角形的三个内角都大于或等于60°

查看答案和解析>>

同步练习册答案