精英家教网 > 初中数学 > 题目详情
17.如图①,正方形ABDE、CDFI、EFGH的面积分别为17、10、13,图②中的DPQR为矩形,对照图②求图①中ABCIGH的面积.

分析 首先求出△BCD,△GFI,△AEH的面积即可,然后△DEF的面积通过图乙求解.

解答 解:∵DF=DC,DE=DB,且∠EDF+∠BDC=180°,
根据三角形的面积公式得S△AHE=S△DEF
同理S△BDC=S△GFI=S△DEF
S△AHE+S△BDC+S△GFI=3×S△DEF
S△DEF=3×4-2-3-1.5=5.5,
∴六边形ABCIGH的面积为S△AHE+S△BDC+S△GFI+S△DEF+17+13+10
=62.
答:六边形ABCIGH的面积为62.

点评 此题考查了正方形的性质以及三角形面积的计算.注意解本题的关键是找到:S△AHE+S△BDC+S△GFI=3×S△DEF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.计算:(3x+2y)(2x+3y)-(4x-3y)(3x+4y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示:△AOB的三个顶点的坐标分别为O(0,0),A(5,0),B(1,4).
(1)求三角形△AOB的面积.
(2)如果三角形△AOB的纵坐标不变,横坐标减小3个单位长度得到三角形O1A1B1,试在图中画出三角形O1A1B1,并求出O1,A1,B1的坐标.
   (3)若O,A两点位置不变,B点在什么位置时,三角形OAB的面积是原三角形面积的2倍.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.尺规作图,已知线段a,b,c,求△ABC,使BC=a,AC=b,AB=c,(要求保留作图痕迹,不必写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知二次函数y=x2+(m+4)x-2m2-12,求证:不论m取何实数此二次函数图象总与x轴有两个交点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值,如表:
 x-1 0 1 2 3 4
 y 10 5 2 1 2 5
(1)求二次函数解析式?
(2)当x为何值,y有最小值,最小值是多少?
(3)若m<0,点A(m,y1)B(m+1,y2)都在该函数图象上,试比较y1、y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知y是关于x-1的正比例函数,且当x=0时,y=2
(1)求y与x的函数关系式;
(2)若点(x1,y1),(x2,y2)在上述函数的图象上,且x1>x2,试比较y1、y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程组$\left\{\begin{array}{l}{x-2y-2=0①}\\{{x}^{2}+{y}^{2}-3y-4=0②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一个样本方差是s2=$\frac{1}{30}$[(x1-2)2+(x2-2)+…+(x30-2)2],如果样本数据的平方和为180,求该样本的方差.

查看答案和解析>>

同步练习册答案