精英家教网 > 初中数学 > 题目详情

【题目】已知如图,O的半径为4,四边形ABCDO的内接四边形,且∠C2A

1)求∠A的度数.

2)求BD的长.

【答案】160°;(2

【解析】

1)根据圆内接四边形的性质即可得到结论;

2)连接OBOD,作OHBDH根据已知条件得到∠BOD120°;求得∠OBD=∠ODB30°,解直角三角形即可得到结论.

1)∵四边形ABCDO的内接四边形,

∴∠C+A180°,

∵∠C2A

∴∠A60°;

2)连接OBOD,作OHBDH

∵∠A60°,∠BOD2A

∴∠BOD120°;

又∵OBOD

∴∠OBD=∠ODB30°,

OHBDH

RtDOH中,,即

OHBDH

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.

(1)求y与x的函数解析式;

(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线yax22x3ax轴交于AB两点,与y轴交于C点,OCOB,点P为抛物线上一动点

1)求抛物线的解析式;

2)当点P运动到抛物线对称轴右侧时如图2,连PCBCBPBCP.设BCP的面积为s,点P的横坐标为x.若s,求x的取值范围;

3)当点P运动到第四象限时,连APBPBPy轴于点R,过B作直线lAPy轴于点Q,问:QROC之间是否存在确定的数量关系?若存在,请求出并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形中,的中点,的垂直平分线分别交的延长线于点,连接,连接并延长交于点,则下列结论中:;②;③;④;⑤ ;⑥;⑦.正确的结论的个数为(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直角三角板∠ABO30°,直角项点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数的y1图象上,顶点B在函数y2的图象上,则=(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形AOBC中,O为坐标原点,OAOB分别在x轴、y轴上,点B的坐标为(03),∠ABO30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(  )

A. ()B. (2)C. ()D. (3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.

(1)用画树状图或列表法求乙获胜的概率;

(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生自主学习的具体情况,童老师随机对部分学生进行了跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差,绘制成了以下两幅不完整的统计图(每位学生只属于一类),请你解答下列问题:

(1) 本次调查的样本容量为__________

(2) 将条形统计图补充完整

(3) D类所占扇形角的度数为__________

(4) 学校共有2000名学生,其中自主学习情况特别好的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数的图象的对称轴为直线.

1)求的值;

2)将函数的图象向右平移2个单位,得到新的函数图象

直接写出函数图象的表达式;

设直线轴交于点A,与y轴交于点B,当线段AB与图象只有一个公共点时,直接写出的取值范围.

查看答案和解析>>

同步练习册答案