【题目】 如图,点P在曲线y=(x<0)上,PA⊥x轴于点A,点B在y轴正半轴上,PA=PB,OA、OB的长是方程t2-8t+12=0的两个实数根,且OA>OB,点C是线段PB延长线上的一个动点,△ABC的外接圆⊙M与y轴的另一个交点是D.
(1)填空:OA=______;OB=______;k=______.
(2)设点Q是⊙M上一动点,若圆心M在y轴上且点P、Q之间的距离达到最大值,则点Q的坐标是______;
(3)试问:在点C运动的过程中,BD-BC的值是否为定值?若是,请求出该定值;若不是,请给出合理的解释.
【答案】(1)6,2,-60;(2)(,-3
-8);(3)是,定值为4
【解析】
(1)求出点A、B的坐标为(-6,0)、(0,2),设点P(-6,),由PA=PB,即可求解;
(2)先求出PM解析式,当PQ过圆心M时,点P、Q之间的距离达到最大值,由两点距离公式可求解;
(3)BD-BC=2r-2rcos∠DBC,即可求解.
(1)t2-8t+12=0,
解得:t=2或6,
即OA=6,OB=2,即点A、B的坐标为(-6,0)、(0,2),
设点P(-6,),
由PA=PB得:36+(2+)2=(
)2,
解得:k=-60,
故点P(-6,10),
故答案为:6,2,-60;
(2)当PQ过圆心M时,点P、Q之间的距离达到最大值,
∵AM2=AO2+OM2,
∴AM2=36+(AM-2)2,
∴AM=10=BM
∴点M坐标为(0,-8)
设直线PM的解析式为:y=kx-8
∴10=-6k-8
∴k=-3
∴直线PM的解析式为:y=-3x-8
∴设点Q(a,-3a-8)(a>0)
∵MQ=10=
∴a=
∴点Q坐标为(,-3
-8)
故答案为:(,-3
-8)
(3)是定值,理由:
连接CD,过点P作PH⊥y轴,
∵tan∠PBH==
=tan∠DBC,则cos∠DBC=
,
∴BD-BC=2r-2rcos∠DBC=2r(1-)=4.
科目:初中数学 来源: 题型:
【题目】高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,我知道路灯有多高了!”同学们,请你和小明一起解答这个问题:
(1)在图中作出路灯O的位置,并作OP⊥l于P.
(2)求出路灯O的高度,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数(x>0)的图象交于点A(a,3)和B(3,1).
(1)求一次函数的解析式.
(2)观察图象,写出反比例函数值小于一次函数值时x的取值范围.
(3)点P是线段AB上一点,过点P作PD⊥x轴于点D,交反比例函数图象于点Q,连接OP、OQ,若△POQ的面积为,求P点的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y1=k1x的图象与反比例函数y2=(x>0)的图象相交于点A(
,2
),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连结AM,则AM∥FB;②连结FE,当F、E、M共线时,AE=4-4;③连结EF、EC、FC,若△FEC是等腰三角形,则AE=4
-4;④连结EF,设FC、ED交于点O,若FE平分∠BFC,则O是FC的中点,且AE=2
-2,其中正确的个数有( )个.
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图象分别与x轴、y轴交于点A、C,与反比列函数
的图象在第一象限内交于点P,过点P作
轴,垂足为B,且
的面积为9.
点A的坐标为______,点C的坐标为______,点P的坐标为______;
已知点Q在反比例函数
的图象上,其横坐标为6,在x轴上确定一点M,使得
的周长最小,求出点M的坐标;
设点E是反比例函数
在第一象限内图象上的一动点,且点E在直线PB的右侧,过点E作
轴,垂足为F,当
和
相似时,求动点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.
(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?
(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C是半圆上一个动点(不与点A,B重合),D是弦AC上一点,过点D作DE⊥AB,垂足为E,过点C作半圆O的切线,交ED的延长线于点F.
(1)求证:FC=FD.
(2)①当∠CAB的度数为 时,四边形OEFC是矩形;②若D是弦AC的中点,⊙O的半径为5,AC=8,则FC的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com