精英家教网 > 初中数学 > 题目详情

【题目】(本题12分)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3, ),B(9,5 ),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OAABBC运动,在OA,AB,BC上运动的速度分别为3, (单位长度/秒)﹒当P,Q中的一点到达C点时,两点同时停止运动.

(1)求AB所在直线的函数表达式.
(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值.
(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.

【答案】
(1)

解:把A(3,3 ),B(9,5 )代入y=kx+b,

;解得: ;

∴y= x+2 ;


(2)

解:在△PQC中,PC=14-t,PC边上的高线长为 ;

∴当t=5时,S有最大值;最大值为 .


(3)

解: a.当0<t≤2时,线段PQ的中垂线经过点C(如图1);

可得方程

解得:,(舍去),此时t=.

b.当2<t≤6时,线段PQ的中垂线经过点A(如图2)

可得方程,

解得:;(舍去),此时

c.当6<t≤10时,

①线段PQ的中垂线经过点C(如图3)

可得方程14-t=25-;

解得:t=.

②线段PQ的中垂线经过点B(如图4)

可得方程;

解得,(舍去);

此时

综上所述:t的值为.


【解析】(1)用待定系数法求直线AB方程即可。
(2)根据三角形的面积公式得到关于t的二次三项式,再由二次函数图像的性质求出S的最大值即可。
(3)根据t的值分情况讨论,依题意列出不同的方程从而求出t的值。
【考点精析】利用确定一次函数的表达式和二次函数的最值对题目进行判断即可得到答案,需要熟知确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知已知抛物线 与x轴交于点 和点 ,与y轴交于点C,且 .

(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(4)连AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F,是否这样的点F,使得以A,C,H,F为顶点的四边形是平行四边形?若存在,直接写出满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点EEGDE,使EG=DE,连接FG,FC.

(1)请判断:FGCE的关系是___;

(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;

(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)在下列表格中填上相应的值

x

-6

-4

-3

-2

-1

1

2

3

4

6

-1

-2

3

1

(2)若将上表中的变量y来代替(即有),请以表中的的值为点的坐标, 在下方的平面直角坐标系描出相应的点,并用平滑曲线顺次连接各点

(3)在(2)的条件下,可将y看作是x的函数 ,请你结合你所画的图像,写出该函数图像的两个性质__________________________________________________.

(4)结合图像,借助之前所学的函数知识,直接写出不等式的解集: ____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.

(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.

(2)A景区与C景区之间的距离是多少?

(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上两点之间的距离等于相对应的两数差的绝对值.

(1)数轴上表示25的两点之间的距离是___________;数轴上表示﹣2和﹣8的两点之间的距离是___________;

(2)数轴上表示数x和﹣1的两点之间的距离是2,那么x_____________;

(3)若某动点表示的数为x,当式子|x+1|+|x﹣2|取得最小值时,相应的x的范围是________.

(4)若某动点表示的数为x,已知数轴上两点对应的数分别为、3,点为点AB之间的一点(不与A,B重合),点对应的数为p。则式子|x﹣p|+|x﹣3|+|x﹣P﹣15|的最小值是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+ x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).

(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角尺如图拼接:含角的三角尺的长直角边与含角的三角尺的斜边恰好重合已知AC上的一个动点.

当点P运动到的平分线上时,连接DP,求DP的长;

当点P在运动过程中出现时,求此时的度数;

当点P运动到什么位置时,以为顶点的平行四边形的顶点Q恰好在边BC上?求出此时DPBQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程(1):2x2-4x-5=0.(公式法) (2) x2-4x+1=0.(配方法)

(3)(y-1)2+2y(1-y)=0.(因式分解法)

查看答案和解析>>

同步练习册答案