精英家教网 > 初中数学 > 题目详情
已知,如图,直线y=2x+4与x轴交于点E,与y轴交于点A,点D是直线AE在第一象限上的一点,以AD为边,在第一象限内做正方形ABCD.
(1)若AD=AE,试求点B的坐标;
(2)若点B、D恰好在反比例函数y=
kx
上,求反比例函数的解析式.
精英家教网
分析:(1)过B作BK⊥y轴,构造全等三角形,易证明△ABK≌△EAO,利用全等三角形的性质解答;
(2)设出两点坐标D(x,2x+4),则B(2x,4-x),将两点分别代入解析式y=
k
x
,根据k的值相等,列出方程解答.
解答:精英家教网解:(1)过B作BK⊥y轴,
∵直线y=2x+4,
∴当x=0时,OA=4,当y=0时,OE=2,
证明:∵正方形ABCD,
∴AD=AB;
∵AD=AE,
∴AB=AE;
∵∠BAK=∠AEO,
∴△ABK≌△EAO,
∴AK=EO=2,BK=AO=4,
∴B(4,2);

(2)设D(x,2x+4),则B(2x,4-x),
∵B、D恰好在反比例函数y=
k
x

∴x(2x+4)=2x(4-x),
解之,得:x1=0(舍去),x2=1,
∴D(1,6);
∴反比例函数解析式为y=
6
x
点评:此题将三角形相似和正方形的性质与正比例函数和反比例函数相结合,考查了同学们的综合运用知识的能力,是一道好题.要掌握设点的坐标利用函数解析式列方程求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,直线y=
3
3
x+
3
与x轴、y轴分别交于A、B两点,⊙M经过精英家教网原点O及A、B两点.
(1)求以OA、OB两线段长为根的一元二方程;
(2)C是⊙M上一点,连接BC交OA于点D,若∠COD=∠CBO,写出经过O、C、A三点的二次函数的解析式;
(3)若延长BC到E,使DE=2,连接EA,试判断直线EA与⊙M的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•岳阳)已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b经过点A、B.
求:(1)这个函数的解析式;
(2)当x=4时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b与x轴交于点A,且与双曲线y=
m
x
交于点B(4,2)和点C(n,-4). 
(1)求直线y=kx+b和双曲线y=
m
x
的解析式;
(2)根据图象写出关于x的不等式kx+b<
m
x
的解集;
(3)点D在直线y=kx+b上,设点D的纵坐标为t(t>0).过点D作平行于x轴的直线交双曲线y=
m
x
于点E.若△ADE的面积为
7
2
,请直接写出所有满足条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线a∥b,∠1=(2x+10)°,∠2=(3x-5)°,那么∠1=
80
80
°.

查看答案和解析>>

同步练习册答案