精英家教网 > 初中数学 > 题目详情
(2005•北京)已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点.
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】分析:(1)根据图象,易得点A、C的坐标,代入解析式可得a、b的关系式;
(2)根据抛物线的对称性,结合题意,分a>0,a<0两种情况讨论,可得答案;
(3)根据题意,设出P的坐标,按P的位置不同分两种情况讨论,可得答案.
解答:解:(1)解法一:∵一次函数y=kx-4k的图象与x轴交于点A,
∴点A的坐标为(4,0).
∵抛物线y=ax2+bx+c经过O、A两点,
∴c=0,16a+4b=0.
∴b=-4a(1分).
解法二:∵一次函数y=kx-4k的图象与x轴交于点A,
∴点A的坐标为(4,0).
∵抛物线y=ax2+bx+c经过O、A两点,
∴抛物线的对称轴为直线x=2.
∴x=-=2.
∴b=-4a(1分).

(2)由抛物线的对称性可知,DO=DA
∴点O在⊙D上,且∠DOA=∠DAO
又由(1)知抛物线的解析式为y=ax2-4ax
∴点D的坐标为(2,-4a)
①当a>0时,如图
设⊙D被x轴分得的劣弧为,它沿x轴翻折后所得劣弧为,显然所在的圆与⊙D关于x轴对称,设它的圆心为D'
∴点D'与点D也关于x轴对称
∵点O在⊙D'上,且⊙D与OD'相切,
∴点O为切点(2分)
∴D'O⊥OD
∴∠DOA=∠D'OA=45°
∴△ADO为等腰直角三角形
∴OD=2(3分)
∴点D的纵坐标为-2
∴-4a=-2,
∴a=,b=-4a=-2.
∴抛物线的解析式为y=x2-2x.(4分)
②当a<0时,
同理可得:OD=2
抛物线的解析式为y=-x2+2x(5分)
综上,⊙D半径的长为,抛物线的解析式为y=x2-2x或y=-x2+2x.

(3)答:抛物线在x轴上方的部分上存在点P,使得∠POA=∠OBA
设点P的坐标为(x,y),且y>0
①当点P在抛物线y=x2-2x上时(如图)
∵点B是⊙D的优弧上的一点
∴∠OBA=∠ADO=45°
∴∠POA=∠OBA=60°
过点P作PE⊥x轴于点E,
∴tan∠POE=
=tan60°,
∴y=

解得:(舍去)
∴点P的坐标为.(7分)
②当点P在抛物线y=-x2+2x上时(如图)
同理可得,y=

解得:(舍去)
∴点P的坐标为(4-2,-6+4).(9分)
综上,存在满足条件的点P,点P的坐标为(4+2,6+4)或(4-2,-6+4).
点评:本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源:2010年中考数学考前10日信息题复习题精选(1)(解析版) 题型:解答题

(2005•北京)已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点.
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年北京市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•北京)已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点.
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《锐角三角函数》(05)(解析版) 题型:解答题

(2005•北京)已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).
在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.
(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;
(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD,求sin∠CAB的值;
②若=n(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).

查看答案和解析>>

科目:初中数学 来源:2009年江苏省苏州市黄桥镇横巷模拟考试数学试卷(解析版) 题型:解答题

(2005•北京)已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).
在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.
(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;
(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD,求sin∠CAB的值;
②若=n(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).

查看答案和解析>>

同步练习册答案