4£®¼×¡¢ÒÒÁ½Á¾Æû³µÑØͬһ·Ï߸ϸ°³ö·¢µØ480ǧÃ×µÄÄ¿µÄµØ£¬ÒÒ³µ±È¼×³µÍí³ö·¢2Сʱ£¨´Ó¼×³µ³ö·¢Ê±¿ªÊ¼¼Æʱ£©£¬Í¼ÖÐÕÛÏßOABC¡¢Ï߶ÎDE·Ö±ð±íʾ¼×¡¢ÒÒÁ½³µËùÐз³Ìy£¨Ç§Ã×£©Óëʱ¼äx£¨Ð¡Ê±£©Ö®¼äµÄº¯Êý¹Øϵ¶ÔÓ¦µÄͼÏó£¨Ï߶ÎAB±íʾ¼×³ö·¢²»×ã2СʱÒò¹ÊÍ£³µ¼ìÐÞ£©£¬Çë¸ù¾ÝͼÏóËùÌṩµÄÐÅÏ¢£¬½â¾öÈçÏÂÎÊÌ⣺
£¨1£©ÇóÒÒ³µËùÐз³ÌyÓëʱ¼äxµÄº¯Êý¹Øϵʽ£»
£¨2£©ÇóÁ½³µÔÚ;Öеڶþ´ÎÏàÓöʱ£¬ËüÃǾà³ö·¢µØµÄ·³Ì£»
£¨3£©ÒÒ³µ³ö·¢¶à³¤Ê±¼ä£¬Á½³µÔÚ;ÖеÚÒ»´ÎÏàÓö£¿£¨Ð´³ö½âÌâ¹ý³Ì£©

·ÖÎö £¨1£©ÓÉͼ¿É¿´³ö£¬ÒÒ³µËùÐз³ÌyÓëʱ¼äxµÄ³ÉÒ»´Îº¯Êý£¬Ê¹Óôý¶¨ÏµÊý·¨¿ÉÇóµÃÒ»´Îº¯Êý¹Øϵʽ£»
£¨2£©ÓÉͼ¿ÉµÃ£¬½»µãF±íʾµÚ¶þ´ÎÏàÓö£¬Fµãºá×ø±êΪ6£¬´úÈ루1£©Öеĺ¯Êý¼´¿ÉÇóµÃ¾à³ö·¢µØµÄ·³Ì£»
£¨3£©½»µãP±íʾµÚÒ»´ÎÏàÓö£¬¼´¼×³µ¹ÊÕÏÍ£³µ¼ìÐÞʱÏàÓö£¬µãPµÄºá×ø±ê±íʾʱ¼ä£¬×Ý×ø±ê±íʾÀë³ö·¢µØµÄ¾àÀ룬ҪÇóʱ¼ä£¬ÔòÐèÒª°ÑµãPµÄ×Ý×ø±êÏÈÇó³ö£»´ÓͼÖп´³ö£¬µãPµÄ×Ý×ø±êÓëµãBµÄ×Ý×ø±êÏàµÈ£¬¶øµãBÔÚÏ߶ÎBCÉÏ£¬BC¶ÔÓ¦µÄº¯Êý¹Øϵ¿Éͨ¹ý´ý¶¨ÏµÊý·¨Çó½â£¬µãBµÄºá×ø±êÒÑÖª£¬Ôò×Ý×ø±ê¿ÉÇó£®

½â´ð ½â£º£¨1£©ÉèÒÒ³µËùÐÐʹ·³ÌyÓëʱ¼äxµÄº¯Êý¹ØϵʽΪy=k1x+b1£¬
°Ñ£¨2£¬0£©ºÍ£¨10£¬480£©´úÈ룬µÃ$\left\{\begin{array}{l}{2{k}_{1}+{b}_{1}=0}\\{10{k}_{1}+{b}_{1}=480}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{{k}_{1}=60}\\{{b}_{1}=-120}\end{array}\right.$£¬
¹ÊyÓëxµÄº¯Êý¹ØϵʽΪy=60x-120£»

£¨2£©ÓÉͼ¿ÉµÃ£¬½»µãF±íʾµÚ¶þ´ÎÏàÓö£¬FµãµÄºá×ø±êΪ6£¬´Ëʱy=60¡Á6=120=240£¬
ÔòFµã×ø±êΪ£¨6£¬240£©£¬
¹ÊÁ½³µÔÚ;Öеڶþ´ÎÏàÓöʱËüÃǾà³ö·¢µØµÄ·³ÌΪ240ǧÃ×£»

£¨3£©ÉèÏ߶ÎBC¶ÔÓ¦µÄº¯Êý¹ØϵʽΪy=k2x+b2£¬
°Ñ£¨6£¬240£©¡¢£¨8£¬480£©´úÈ룬
µÃ$\left\{\begin{array}{l}{6{k}_{2}+{b}_{2}=240}\\{8{k}_{2}+{b}_{2}=480}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{k}_{2}=120}\\{{b}_{2}=-480}\end{array}\right.$£¬
¹ÊyÓëxµÄº¯Êý¹ØϵʽΪy=120x-480£¬
Ôòµ±x=4.5ʱ£¬y=120¡Á4.5-480=60£®
¿ÉµÃ£ºµãBµÄ×Ý×ø±êΪ60£¬
¡ßAB±íʾÒò¹ÊÍ£³µ¼ìÐÞ£¬
¡à½»µãPµÄ×Ý×ø±êΪ60£¬
°Ñy=60´úÈëy=60x-120ÖУ¬
ÓÐ60=60x-120£¬
½âµÃx=3£¬
Ôò½»µãPµÄ×ø±êΪ£¨3£¬60£©£¬
¡ß½»µãP±íʾµÚÒ»´ÎÏàÓö£¬
¡àÒÒ³µ³ö·¢3-2=1Сʱ£¬Á½³µÔÚ;ÖеÚÒ»´ÎÏàÓö£®

µãÆÀ ±¾ÌâÒâÔÚ¿¼²éѧÉúÀûÓôý¶¨ÏµÊý·¨Çó½âÒ»´Îº¯Êý¹Øϵʽ£¬²¢ÀûÓùØϵʽÇóÖµµÄÔËËã¼¼ÄܺʹÓ×ø±êϵÖÐÌáÈ¡ÐÅÏ¢µÄÄÜÁ¦£¬ÊǵÀ×ÛºÏÐÔ½ÏÇ¿µÄ´úÊýÓ¦ÓÃÌ⣬¶ÔѧÉúÄÜÁ¦ÒªÇó±È½Ï¸ß£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ö±Ïßy=2x-3Óëy=-2x+aµÄ½»µã²»¿ÉÄÜÔÚµÚ¶þÏóÏÞ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬Ö±Ïßy=kx+b·Ö±ðÓëxÖá¡¢yÖá½»ÓÚµãA£¨-2£¬0£©£¬B£¨0£¬3£©£»Ö±Ïßy=1-mx·Ö±ðÓëxÖá½»ÓÚµãC£¬ÓëÖ±ÏßAB½»ÓÚµãD£¬ÒÑÖª¹ØÓÚxµÄ²»µÈʽkx+b£¾1-mxµÄ½â¼¯ÊÇx£¾-$\frac{4}{5}$£®
£¨1£©·Ö±ðÇó³ök£¬b£¬mµÄÖµ£»
£¨2£©ÇóS¡÷ACD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ËıßÐÎABCDÊDZ߳¤Îª13cmµÄÁâÐΣ¬ÆäÖжԽÇÏßBD³¤10cm£®
Ç󣺣¨1£©¶Ô½ÇÏßACµÄ³¤¶È£®
£¨2£©ÁâÐÎABCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÈôPΪABµÄ»Æ½ð·Ö¸îµã£¬ÇÒAP£¾PB£¬AB=12cm£¬ÔòAP=6$\sqrt{5}$-6cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª·´±ÈÀýº¯Êýy=$\frac{b}{x}$£¨bΪ³£Êý£¬b¡Ù0£©µÄͼÏó¾­¹ýµã£¨a£¬$\sqrt{2}$£©£¬Ôò2a-$\sqrt{2}$b+1µÄÖµÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®½«Å×ÎïÏßy=x2Ïò×óƽÒÆ5¸öµ¥Î»£¬µÃµ½µÄÅ×ÎïÏß½âÎöʽΪy=£¨x+5£©2£¨»òy=x2+10x+25£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$ÊÇ·½³Ì×é$\left\{\begin{array}{l}{mx+y=0}\\{x+ny=1}\end{array}\right.$µÄ½â£¬Ôòm£¬nµÄÖµÊÇ£¨¡¡¡¡£©
A£®m=-$\frac{3}{2}$£¬n=$\frac{1}{3}$B£®m=-$\frac{2}{3}$£¬n=-$\frac{1}{3}$C£®m=$\frac{3}{2}$£¬n=$\frac{1}{3}$D£®m=$\frac{3}{2}$£¬n=-$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚ?ABCDÖУ¬¡ÏB=60¡ã£¬ÄÇôÏÂÁи÷ʽÖУ¬²»ÄܳÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®¡ÏA+¡ÏC=180¡ãB£®¡ÏA=120¡ãC£®¡ÏC+¡ÏD=180¡ãD£®¡ÏD=60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸