精英家教网 > 初中数学 > 题目详情

如图一次函数y=k1x+b的图象与反比例函数y=数学公式的图象交于点A(1,6),B(3,a).
(1)求k1、k2的值;
(2)直接写出一次函数y=k1x+b的值大于反比例函数数学公式的值时x的取值范围:______;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当点P为CE的中点时,求梯形OBCD的面积.

解:(1)把A(1,6)代入y=
解得,k2=6,
∴y=
把B(3,a)代入y=
解得,a=2,
∴B点坐标为(3,2),
把B(3,2)、A(1,6)代入y=k1x+b,
得3k1+b=2,k1+b=6,
解得k1=-2,b=8,
∴k1=-2,k2=6;

(2)1<x<3 或 x<0;

(3)如图,设C(t,2),过B作BF⊥x轴于F点,
∵CE⊥OD于点E,点P为CE的中点,
∴P(t,1),
而点P在反比例函数y=的图象上,
把P(t,1)代入y=得,t=6,
∴C点坐标为(6,2),
又∵等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上且B(3,2),
∴BC=3,ED=OF=3,
∴OD=OF+EF+ED=9,而CE=2,
∴S梯形OBCD=×(9+3)×2=12.
分析:(1)先把A(1,6)代入y=可求出k2=6,则反比例函数的解析式y=,然后把B(3,a)代入得a=2,确定B点坐标为(3,2),再利用待定系数法确定一次函数的解析式,从而得到k1的值;
(2)观察图象得到当x<0或1<x<3时,一次函数的图象在反比例函数图象的上方;
(3)设C(t,2),过B作BF⊥x轴于F点,由点P为CE的中点得到P(t,1),又由点P在反比例函数y=的图象上,易得C点坐标为(6,2),再利用OB=CD,OD边在x轴上且B(3,2),得到BC=3,ED=OF=3,则OD=OF+EF+ED=9,而CE=2,然后根据梯形的面积公式计算即可.
点评:本题考查了反比例函数的综合题:利用待定系数法确定反比例和一次函数的解析式;学会观察函数图象,从图象中获取信息;利用点的坐标和等腰梯形的性质求出某些线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网一次函数y1=k1x+b和反比例函数y2=
k2
x
(k1?k2≠0)的图象如图所示,若y1>y2,则x的取值范围是(  )
A、-2<x<0或x>1
B、-2<x<1
C、x<-2或x>1
D、x<-2或0<x<1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳模拟)如图,一次函数y=-2x+b的图象与二次函数y=-x2+3x+c的图象都经过原点,
(1)b=
0
0
,c=
0
0

(2)一般地,当直线y=k1x+b1与直线y=k2x+b2平行时,k1=k2,b1≠b2,若直线y=kx+m与直线y=-2x+b平行,与轴交于点A,且经过直线y=-x2+3x+c的顶点P,则直线y=kx+m的表达式为
y=-2x+
21
4
y=-2x+
21
4

(3)在满足(2)的条件下,求△APO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图一次函数y=k1x+b的图象与反比例函数y=
k2
x
的图象交于点A(1,6),B(3,a).
(1)求k1、k2的值;
(2)直接写出一次函数y=k1x+b的值大于反比例函数y=
k2
x
的值时x的取值范围:
1<x<3或x<0
1<x<3或x<0

(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当点P为CE的中点时,求梯形OBCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系xOy的第一象限内,一次函数y=k1x+b(k1≠0)图象与反比例函数y=
k2
x
(k2≠0)的图象交于A(1,4)、B(3,u)两点.
(1)求一次函数的关系式,
(2)当x>0时,写出不等式
k2
x
>k1+b的解集.

查看答案和解析>>

同步练习册答案