精英家教网 > 初中数学 > 题目详情

-a2•(a22=________.

-a6
分析:根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加计算即可.
解答:-a2•(a22
=-a2•a4
=-a6
点评:此题主要考查同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

化简
(1)-a2-a3-a2+a3-a2
(2)
1
3
m2n-nm2-
1
2
mn2+
1
6
n2m

(3)2x2-3x+1-(5-3x+x2);
(4)(2a2-
1
2
+3a)-4(a-a2+
1
2
)

查看答案和解析>>

科目:初中数学 来源: 题型:

对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:
①a2-6a-7;
②a4+a2b2+b4
(2)若a+b=5,ab=6,求:
①a2+b2
②a4+b4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)引例:如图①所示,直线AD∥CE.求证:∠B=∠A+∠C.
(2)变式:如图②所示,a∥b,请判断∠A1、∠A2、∠A3、∠A4、∠A5之间的大小关系,直接写出结论,无需证明.
答:______.
如图③a∥b,请判断∠A1、∠A2、∠A3、∠A4之间的大小关系,直接写出结论,无需证明.
(3)推广:如图④a∥b,请判断∠A1、∠A2、∠A3、…、∠A2n之间的大小关系,直接写出结论,无需证明(注意图中的“…”)
答:______.
如图⑤,a∥b,请判断∠A1、∠A2、∠A3、…、∠A2n+1之间的大小关系,直接写出结论,无需证明(注意图中的“…”)
答:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

同步练习册答案