精英家教网 > 初中数学 > 题目详情
如图,设P为△ABC外一点,P在边AC之外,在∠B之内.S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三边a,b,c上的高为ha=3,hb=5,hc=6,则P到三边的距离之和为   
【答案】分析:首先设P到三边的距离为pa,pb,pc,S△PBC=4S,S△PCA=2S,S△PAB=3S,根据同底三角形的面积比等于高的比,即可求得pa,pb,pc的值,则可得到答案.
解答:解:如图设P到三边的距离为pa,pb,pc,S△PBC=4S,S△PCA=2S,S△PAB=3S,
则S△ABC=S△PBC+S△PAB-S△PCA=4S+3S-2S=5S,

∴pa=ha=
同理可得:pb=ha=2,pc=hc=
∴pa+pb+pc=+2+=8.
故答案为:8
点评:此题考查了同底三角形的面积比等于高的比的性质.解题的关键是注意识图,合理应用数形结合思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,设P为△ABC外一点,P在边AC之外,在∠B之内.S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三边a,b,c上的高为ha=3,hb=5,hc=6,则P到三边的距离之和为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,设O为△ABC内一点,且∠AOB=∠BOC=∠COA=120°,P为任意一点(不是O).求证:PA+PB+PC>OA+OB+OC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,设O为△ABC内一点,连接AO、BO、CO,并延长交BC、CA、AB于点D、E、F,已知S△AOB:S△BOC:S△AOC=3:4:6.则
OD
AO
OE
BO
OF
CO
等于(  )

查看答案和解析>>

科目:初中数学 来源:2000年第12届“五羊杯”初中数学竞赛初三试卷(解析版) 题型:填空题

如图,设P为△ABC外一点,P在边AC之外,在∠B之内.S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三边a,b,c上的高为ha=3,hb=5,hc=6,则P到三边的距离之和为   

查看答案和解析>>

同步练习册答案