精英家教网 > 初中数学 > 题目详情
如图,一次函数y1=k1x+2与反比例函数y2=
k2x
的图象交于点A(4,m)和B(-8精英家教网,-2),与y轴交于点C.
(1)k1=
 
,k2=
 

(2)根据函数图象可知,当y1>y2时,x的取值范围是
 

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.
分析:(1)本题须把B点的坐标分别代入一次函数y1=k1x+2与反比例函数y2=
k2
x
的解析式即可求出K2、k1的值.
(2)本题须先求出一次函数y1=k1x+2与反比例函数y2=
k2
x
的图象的交点坐标,即可求出当y1>y2时,x的取值范围.
(3)本题须先求出四边形OCAD的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.
解答:解:(1)∵一次函数y1=k1x+2与反比例函数y2=
k2
x
的图象交于点A(4,m)和B(-8,-2),
∴K2=(-8)×(-2)=16,
-2=-8k1+2
∴k1=
1
2


(2)∵一次函数y1=k1x+2与反比例函数y2=
k2
x
的图象交于点A(4,4)和B(-8,-2),
∴当y1>y2时,x的取值范围是精英家教网
-8<x<0或x>4;

(3)由(1)知,y1=
1
2
x+2,y2=
16
x

∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).
∴CO=2,AD=OD=4.
S 梯形ODAC=
CO+AD
2
×OD=
2+4
2
×4=12

∵S梯形ODAC:S△ODE=3:1,∴S△ODE=
1
3
S梯形ODAC=
1
3
×12=4,
1
2
OD•DE=4,
∴DE=2.
∴点E的坐标为(4,2).
又点E在直线OP上,
∴直线OP的解析式是y=
1
2
x

∴直线OP与y2=
16
x
的图象在第一象限内的交点P的坐标为(4
2
,2
2
).
故答案为:
1
2
,16,-8<x<0或x>4
点评:本题主要考查了反比例函数的综合问题,在解题时要综合应用反比例函数的图象和性质以及求一次函数与反比例函数交点坐标是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
的图象交于A、B两点,点A、B的横坐标分别为-2、1.当y1>y2时,自变量x的取值范围是(  )
A、-2<x<1
B、0<x<1
C、x<-2和0<x<1
D、-2<x<1和x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
mx
 
(m≠0)
的图象交于二、四象限内的A、B两点,过A作AC⊥x轴于点C,连接OA、OB、BC.已知OC=4,tan∠OAC=2,点B的纵坐标为-6.
(1)求反比例函数和直线AB的解析式;
(2)求四边形OACB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b的图象与反比例函数y2=
mx
的图象相交于A、B两点,试利用图中条件,求y1和y2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+1(k≠0)与反比例函数y2=
mx
(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
(3)当y1>y2时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b与反比例函数y2=-
6x
交于点A(m,6)、B(3,n).
(1)求一次函数的关系式;
(2)求△AOB的面积;
(3)直接写出y1>y2时x的取值范围.

查看答案和解析>>

同步练习册答案