精英家教网 > 初中数学 > 题目详情
已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.
(1)根据题意,得b=1+b+c.
∴c=-1.
∴B(0,-1);

(2)过点A作AH⊥y轴,垂足为点H.
∵∠ABO的余切值为3,∴cot∠ABO=
BH
AH
=3

而AH=1,∴BH=3.
∵BO=1,∴HO=2.
∴b=2.
∴所求函数的解析式为y=x2-2x-1;

(3)由y=x2-2x-1=(x-1)2-2,得顶点C的坐标为(1,-2).
AC=2
5
AB=
10
BC=
2
AO=
5
,BO=1.
AC
AB
=
AB
AO
=
BC
BO
=
2

∴△ABC△AOB.
∴∠ACB=∠ABO.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,圆M与x轴相交于A,B两点,其坐标分别为A(-3,0),B(1,0),直径CD垂直于x轴于N,直线CE切圆M于C,直线FG切圆M于F,交CE于G,已知点G的横坐标为3,
(1)若抛物线y=-x2-2x+m经过A,B,D三点,求m的值及点D的坐标;
(2)求直线DF的解析式;
(3)是否存在过点G的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过A,C,D三点,且三点坐标为A(-1,0),C(0,5),D(2,5),抛物线与x轴的另一个交点为B点,点F为y轴上一动点,作平行四边形DFBG,
(1)B点的坐标为______;
(2)是否存在F点,使四边形DFBG为矩形?如存在,求出F点坐标;如不存在,说明理由;
(3)连结FG,FG的长度是否存在最小值?如存在求出最小值;若不存在说明理由;
(4)若E为AB中点,找出抛物线上满足到E点的距离小于2的所有点的横坐标x的范围:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;
(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;
(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2-4x+c的图象经过点A(-1,-1)和B(3,-9).
(1)求该二次函数的解析式;
(2)填空:该抛物线的对称轴是______;顶点坐标是______;当x=______时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点C(
3
,0),点D(0,1),CD的中垂线交CD于点E,交y轴于点B,点P从点C出发沿CO方向以每秒2
3
个单位的速度运动,同时点Q从原点O出发沿OD方向以每秒1个单位的速度向点D运动,当点Q到达点D时,点P,Q同时停止运动,设运动的时间为秒.
(1)求出点B的坐标;
(2)当t为何值时,△POQ与△COD相似?
(3)当点P在x轴负半轴上时,记四边形PBEQ的面积为S,求S关于t的函数关系式,并写出自变量的取值范围;
(4)在点P、Q的运动过程中,将△POQ绕点O旋转180°,点P的对应点P′,点Q的对应点Q′,当线段P′Q′与线段BE有公共点时,抛物线y=ax2+1经过P′Q′的中点,此时的抛物线与x轴正半轴交于点M.由已知,直接写出:①a的取值范围为______;②点M移动的平均速度是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列.1996---2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿.宁波市区年GDPy(亿元)与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式.
(2)据调查2005年市区建设用地比2004年增加4万亩,如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?
(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(精确到0.001万亩).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P为抛物线y=
3
4
x2-
3
2
x+
1
4
上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=-
1
2
x+1交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.

(1)请直接写出点C,D的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒
5
个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

查看答案和解析>>

同步练习册答案