ÔĶÁÏÂÃæ²ÄÁÏ£¬ÔٻشðÎÊÌ⣺
ÓÐһЩ¼¸ºÎͼÐοÉÒÔ±»Ä³ÌõÖ±Ïß·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬ÎÒÃǽ«¡°°ÑÒ»¸ö¼¸ºÎͼÐηֳÉÃæ»ýÏàµÈµÄÁ½²¿·ÖµÄÖ±Ïß½Ð×ö¸ÃͼÐεĶþ·ÖÏß¡±£¬È磺ԲµÄÖ±¾¶ËùÔÚµÄÖ±ÏßÊÇÔ²µÄ¡°¶þ·ÖÏß¡±£¬Õý·½ÐεĶԽÇÏßËùÔÚµÄÖ±ÏßÊÇÕý·½Ðεġ°¶þ·ÖÏß¡±£®
½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©ÁâÐεġ°¶þ·ÖÏß¡±¿ÉÒÔÊÇ______£®
£¨2£©Èý½ÇÐεġ°¶þ·ÖÏß¡±¿ÉÒÔÊÇ______£®
£¨3£©ÔÚͼÖУ¬ÊÔÓÃÁ½ÖÖ²»Í¬µÄ·½·¨·Ö±ð»­³öµÈÑüÌÝÐÎABCDµÄ¡°¶þ·ÖÏß¡±£¬²¢ËµÃ÷ÄãµÄ»­·¨£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÀûÓÃÁâÐεÄÖá¶Ô³ÆÐÔ£¬ÀûÓÃÁâÐεÄÒ»Ìõ¶Ô½ÇÏßËùÔÚµÄÖ±Ïߣ®
£¨»òÁâÐεÄÒ»×é¶Ô±ßµÄÖеãËùÔÚµÄÖ±Ïß»òÁâÐζԽÇÏß½»µãµÄÈÎÒâÒ»ÌõÖ±Ïߣ©£®
£¨2£©ÀûÓÃÈý½ÇÐÎÒ»±ßÖÐÏßËùÔÚµÄÖ±Ïß¼´¿É½â¾öÎÊÌ⣮
£¨3£©·½·¨Ò»£ºÈ¡ÉÏ¡¢Ïµ׵ÄÖе㣬¹ýÁ½µã×÷Ö±ÏßµÃÌÝÐεĶþ·ÖÏߣ»
·½·¨¶þ£º¹ýA¡¢D×÷AE¡ÍBC£¬DF¡ÍBC£¬´¹×ãE¡¢F£¬Á¬½ÓAF¡¢DEÏཻÓÚO£¬¹ýµãOÈÎÒâ×÷Ö±Ïß¼´ÎªÌÝÐεĶþ·ÖÏߣ®
½â´ð£º½â£º£¨1£©ÁâÐεÄÒ»Ìõ¶Ô½ÇÏßËùÔÚµÄÖ±Ïߣ®
£¨»òÁâÐεÄÒ»×é¶Ô±ßµÄÖеãËùÔÚµÄÖ±Ïß»òÁâÐζԽÇÏß½»µãµÄÈÎÒâÒ»ÌõÖ±Ïߣ©£®

£¨2£©Èý½ÇÐÎÒ»±ßÖÐÏßËùÔÚµÄÖ±Ïߣ®

£¨3£©·½·¨Ò»£ºÈ¡ÉÏ¡¢Ïµ׵ÄÖе㣬¹ýÁ½µã×÷Ö±ÏßµÃÌÝÐεĶþ·ÖÏߣ®£¨Èçͼ£©
·½·¨¶þ£º¹ýA¡¢D×÷AE¡ÍBC£¬DF¡ÍBC£¬´¹×ãE¡¢F£¬Á¬½ÓAF¡¢DEÏཻÓÚO£¬¹ýµãOÇÒÒªÓëADÏཻµÄÖ±Ïß¼´ÎªÌÝÐεĶþ·ÖÏߣ®£¨Èçͼ2£©

µãÆÀ£º±¾ÌâÐè×Ðϸ·ÖÎöÌâÒ⣬½áºÏͼÐΣ¬ÀûÓÃÏ߶εÄÖе㼴¿É½â¾öÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæ²ÄÁÏ£¬ÔٻشðÎÊÌ⣺
Ò»°ãµØ£¬Èç¹ûº¯Êýy=f£¨x£©¶ÔÓÚ×Ô±äÁ¿È¡Öµ·¶Î§ÄÚµÄÈÎÒâx£¬¶¼ÓÐf£¨-x£©=-f£¨x£©£¬ÄÇôy=f£¨x£©¾Í½Ð×öÆ溯Êý£»Èç¹ûº¯Êýy=f£¨x£©¶ÔÓÚ×Ô±äÁ¿È¡Öµ·¶Î§ÄÚµÄÈÎÒâx£¬¶¼ÓÐf£¨-x£©=f£¨x£©£¬ÄÇôy=f£¨x£©¾Í½Ð×öżº¯Êý£®
ÀýÈ磺f£¨x£©=x3+x
µ±xÈ¡ÈÎÒâʵÊýʱ£¬f£¨-x£©=£¨-x£©3+£¨-x£©=-x3-x=-£¨x3+x£©
¼´f£¨-x£©=-f£¨x£©
ËùÒÔf£¨x£©=x3+xΪÆ溯Êý
ÓÖÈçf£¨x£©=|x|
µ±xÈ¡ÈÎÒâʵÊýʱ£¬f£¨-x£©=|-x|=|x|=f£¨x£©
¼´f£¨-x£©=f£¨x£©
ËùÒÔf£¨x£©=|x|ÊÇżº¯Êý
ÎÊÌ⣨1£©£ºÏÂÁк¯ÊýÖÐ
¢Ùy=x4¢Úy=x2+1¢Ûy=
1
x3

¢Üy=
x+1
¢Ýy=x+
1
x

ËùÓÐÆ溯ÊýÊÇ
 
£¬ËùÓÐżº¯ÊýÊÇ
 
£¨Ö»ÌîÐòºÅ£©
ÎÊÌ⣨2£©£ºÇëÄãÔÙ·Ö±ðд³öÒ»¸öÆ溯Êý¡¢Ò»¸öżº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

24¡¢ÔĶÁÏÂÃæ²ÄÁÏ£¬ÔٻشðÎÊÌ⣺
ÓÐһЩ¼¸ºÎͼÐοÉÒÔ±»Ä³ÌõÖ±Ïß·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬ÎÒÃǽ«¡°°ÑÒ»¸ö¼¸ºÎͼÐηֳÉÃæ»ýÏàµÈµÄÁ½²¿·ÖµÄÖ±Ïß½Ð×ö¸ÃͼÐεĶþ·ÖÏß¡±£¬È磺ԲµÄÖ±¾¶ËùÔÚµÄÖ±ÏßÊÇÔ²µÄ¡°¶þ·ÖÏß¡±£¬Õý·½ÐεĶԽÇÏßËùÔÚµÄÖ±ÏßÊÇÕý·½Ðεġ°¶þ·ÖÏß¡±£®
½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©ÁâÐεġ°¶þ·ÖÏß¡±¿ÉÒÔÊÇ
ÁâÐεÄÒ»Ìõ¶Ô½ÇÏßËùÔÚµÄÖ±Ïß
£®
£¨2£©Èý½ÇÐεġ°¶þ·ÖÏß¡±¿ÉÒÔÊÇ
Èý½ÇÐÎÒ»±ßÖÐÏßËùÔÚµÄÖ±Ïߣ®
£®
£¨3£©ÔÚÏÂͼÖУ¬ÊÔÓÃÁ½ÖÖ²»Í¬µÄ·½·¨·Ö±ð»­³öµÈÑüÌÝÐÎABCDµÄ¡°¶þ·ÖÏß¡±£¬²¢ËµÃ÷ÄãµÄ»­·¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæ²ÄÁÏ£¬ÔٻشðÎÊÌ⣮
Ò»°ãµØ£¬Èç¹ûº¯Êýy=f£¨x£©¶ÔÓÚ×Ô±äÁ¿È¡Öµ·¶Î§ÄÚµÄÈÎÒâx£¬¶¼ÓÐf£¨-x£©=f£¨x£©£®ÄÇôy=f£¨x£©¾Í½Ðżº¯Êý£®Èç¹ûº¯Êýy=f£¨x£©¶ÔÓÚ×Ô±äÁ¿È¡Öµ·¶Î§ÄÚµÄÈÎÒâx£¬¶¼ÓÐf£¨-x£©=-f£¨x£©£®ÄÇôy=f£¨x£©¾Í½ÐÆ溯Êý£®
ÀýÈ磺f£¨x£©=x4
µ±xÈ¡ÈÎÒâʵÊýʱ£¬f£¨-x£©=£¨-x£©4=x4¡àf£¨-x£©=f£¨x£©¡àf£¨x£©=x4ÊÇżº¯Êý£®
ÓÖÈ磺f£¨x£©=2x3-x£®
µ±xÈ¡ÈÎÒâʵÊýʱ£¬¡ßf£¨-x£©=2£¨-x£©3-£¨-x£©=-2x3+x=-£¨2x3-x£©¡àf£¨-x£©=-f£¨x£©¡àf£¨x£©=2x3-xÊÇÆ溯Êý£®
ÎÊÌâ1£ºÏÂÁк¯ÊýÖУº¢Ùy=x2+1¢Úy=
5
x3
¢Ûy=
x+1
¢Üy=x+
1
x
¢Ýy=x-2-2|x|
ÊÇÆ溯ÊýµÄÓÐ
 
£»ÊÇżº¯ÊýµÄÓÐ
 
£¨ÌîÐòºÅ£©
ÎÊÌâ2£º·ÂÕÕÀýÖ¤Ã÷£ºº¯Êý¢Ü»ò¢ÝÊÇÆ溯Êý»¹ÊÇżº¯Êý£¨Ñ¡ÔñÆäÖÐÖ®Ò»£©     £¨4·Ö£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁÏÂÃæ²ÄÁÏ£¬ÔٻشðÎÊÌ⣮
Ò»°ãµØ£¬Èç¹ûº¯ÊýyµÄ×Ô±äÁ¿xÔÚa£¼x£¼b·¶Î§ÄÚ£¬¶ÔÓÚÈÎÒâx1£¬x2£¬µ±a£¼x1£¼x2£¼bʱ£¬×ÜÊÇÓÐy1£¼y2£¨ynÊÇÓëxn¶ÔÓ¦µÄº¯ÊýÖµ£©£¬ÄÇô¾Í˵º¯ÊýyÔÚa£¼x£¼b·¶Î§ÄÚÊÇÔöº¯Êý£®
ÀýÈ磺º¯Êýy=x2ÔÚÕýʵÊý·¶Î§ÄÚÊÇÔöº¯Êý£®
Ö¤Ã÷£ºÔÚÕýʵÊý·¶Î§ÄÚÈÎÈ¡x1£¬x2£¬Èôx1£¼x2£¬
Ôòy1-y2=x12-x22=£¨ x1-x2£©£¨ x1+x2£©
ÒòΪx1£¾0£¬x2£¾0£¬x1£¼x2
ËùÒÔx1+x2£¾0£¬x1-x2£¼0£¬£¨ x1-x2£©£¨ x1+x2£©£¼0
¼´y1-y2£¼0£¬Ò༴y1£¼y2£¬Ò²¾ÍÊǵ±x1£¼x2ʱ£¬y1£¼y2£®
ËùÒÔº¯Êýy=x2ÔÚÕýʵÊý·¶Î§ÄÚÊÇÔöº¯Êý£®
ÎÊÌ⣺
£¨1£©ÏÂÁк¯ÊýÖУ®¢Ùy=-2x£¨xΪȫÌåʵÊý£©£»¢Úy=-
2
x
£¨x£¾0£©£»¢Ûy=
1
x
£¨x£¾0£©£»ÔÚ¸ø¶¨×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÄÚ£¬ÊÇÔöº¯ÊýµÄÓÐ
¢Ú
¢Ú
£®
£¨2£©¶ÔÓÚº¯Êýy=x2-2x+1£¬µ±×Ô±äÁ¿x
£¾1
£¾1
ʱ£¬º¯ÊýÖµyËæxµÄÔö´ó¶øÔö´ó£®
£¨3£©ËµÃ÷º¯Êýy=-x2+4x£¬µ±x£¼2ʱÊÇÔöº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012½ìºþ±±Ê¡Ò˲ýÊг¤ÑôÏؾÅÄ꼶ÉÏѧÆÚÆÚÄ©¼ì²âÊýѧÊÔ¾í£¨´ø½âÎö£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæ²ÄÁÏ£¬ÔٻشðÎÊÌ⣺
ÓÐһЩ¼¸ºÎͼÐοÉÒÔ±»Ä³ÌõÖ±Ïß·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬ÎÒÃǽ«¡°°ÑÒ»¸ö¼¸ºÎͼÐηֳÉÃæ»ýÏàµÈµÄÁ½²¿·ÖµÄÖ±Ïß½Ð×ö¸ÃͼÐεĶþ·ÖÏß¡±£¬È磺ԲµÄÖ±¾¶ËùÔÚµÄÖ±ÏßÊÇÔ²µÄ¡°¶þ·ÖÏß¡±£¬Õý·½ÐεĶԽÇÏßËùÔÚµÄÖ±ÏßÊÇÕý·½Ðεġ°¶þ·ÖÏß¡±¡£
½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©ÁâÐεġ°¶þ·ÖÏß¡±¿ÉÒÔÊÇ                                   ¡£
£¨2£©Èý½ÇÐεġ°¶þ·ÖÏß¡±¿ÉÒÔÊÇ                                 ¡£
£¨3£©ÔÚÏÂͼÖУ¬ÊÔÓÃÁ½ÖÖ²»Í¬µÄ·½·¨·Ö±ð»­³öµÈÑüÌÝÐÎABCDµÄ¡°¶þ·ÖÏß¡±.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸