精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+(
43
+3a)x+4与x轴交于A、B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.
分析:可根据抛物线的解析式表示出A、B、C的坐标,然后分别表示出AB、AC、BC的长,可根据∠BAC=90°,∠BCA=90°,∠ABC=90°三种不同情况用勾股定理求出a的值.
解答:精英家教网解:依题意,得点C的坐标为(0,4),
设点A、B的坐标分别为(x1,0),(x2,0),
由ax2+(
4
3
+3a)x+4=0,
解得x1=-3,x2=-
4
3a

∴点A、B的坐标分别为(-3,0),(-
4
3a
,0),
∴AB=|-
4
3a
+3|,AC=
AO2+OC2
=5,BC=
CB2+OC2
=
|-
4
3a
|
2
+42

∴AB2=|-
4
3a
+3|2=
16
9a2
-
8
a
+9,
AC2=25,BC2=
16
9a2
+16.
(ⅰ)当AB2=AC2+BC2时,∠ACB=90°,
由AB2=AC2+BC2
16
9a2
-
8
a
+9=25+
16
9a2
+16,
解得a=-
1
4

∴当a=-
1
4
时,点B的坐标为(
16
3
,0),
AB2=
625
9
,AC2=25,BC2=
400
9

于是AB2=AC2+BC2
∴当a=-
1
4
时,△ABC为直角三角形.
(ⅱ)当AC2=AB2+BC2时,∠ABC=90°,
由AC2=AB2+BC2
得25=
16
9a2
-
8
a
+9+
16
9a2
+16,
解得a=
4
9

当a=
4
9
时,-
4
3a
=-
4
4
9
=-3,点B(-3,0)与点A重合,不合题意.
<ⅲ>当BC2=AC2+AB2时,∠BAC=90°,
由BC2=AC2+AB2
得25+
16
9a2
-
8
a
+9=
16
9a2
+16,
解得a=
4
9

不合题意.
综合<ⅰ>、<ⅱ>、<ⅲ>,当a=-
1
4
时,△ABC为直角三角形.
点评:本题考查了二次函数的应用、直角三角形的判定和勾股定理等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案