精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA,垂足为点D,PE⊥OB,垂足为点E,点M,N分别在线段OD和射线EB上,PM=PN,∠AOB=68°,求∠MPN的度数.

解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,
∴PD=PE.∠PDO=∠PEO=∠PEN=90°.
∵∠PDO+∠PEO+∠DPE+∠AOE=360°,∠AOB=68°,
∴∠DPE=112°.
在Rt△PDM和Rt△PEN中,

∴Rt△PDM≌Rt△PEN(HL),
∴∠DPM=∠EPN.
∴∠DPM+MPE=∠EPN+∠MPE,
∴∠DPE=∠EPN=112°.
答:∠MPN的度数为112°.
分析:根据四边形的内角和可以得出∠DPE的值,通过证明△PDM≌△PEN就可以得出∠DPM=∠EPN就可以得出结论.
点评:本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,四边形的内角和定理的运用,解答时证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.
(1)求证:AC是⊙O的切线;
(2)若OA=10,AD=16,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8m,OC=5m,则DC的长为(  )

查看答案和解析>>

科目:初中数学 来源:设计八年级上数学人教版 人教版 题型:047

定理的证明:

已知:如图,OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D、E.

求证:PD=PE.

查看答案和解析>>

科目:初中数学 来源:初中几何同步单元练习册 第1册 题型:022

已知:如图,OC是∠AOB的平分线,且∠1=∠2.

求证:EF∥OB.

证明:因为OC是∠AOB的平分线,

所以∠1=∠3(  ).

因为∠1=∠2,

所以∠2=∠3(  ).

所以EF∥OB(  ).

查看答案和解析>>

同步练习册答案