精英家教网 > 初中数学 > 题目详情
精英家教网已知矩形ABCD的对角线交于O点,且∠AOD=120°,AD=8cm,则AC=
 
分析:矩形的四个角都是直角,对角线相等且互相平分,根据∠AOD=120°,可求出∠DAO=30°,根据直角三角形中30°所对的边是斜边的一半,可设AB=x,根据勾股定理可列方程求解.
解答:解:已知矩形ABCD的对角线交于O点,且∠AOD=120°,
∴∠DAO=30°,
设AB=x,则AC=2x.
∴在Rt△ACD中,82+x2=(2x)2
x=
8
3
3

∴AC=2x=
16
3
3

故答案为:
16
3
3
点评:本题考查矩形的性质,矩形的对角线相等且互相平分,四个角都是直角,以及直角三角形中30°角所对边的特点和勾股定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形ABCD.
(1)在图中作出△CDB沿对角线BD所在的直线对折后的△C′DB,C点的对应点为C′(用尺规作图,保留清晰的作图痕迹,简要写明作法);
(2)设C′B与AD的交点为E,若△EBD的面积是整个矩形面积的
13
,求∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.
答:对图(2)的探究结论为
PA2+PC2=PB2+PD2

对图(3)的探究结论为
PA2+PC2=PB2+PD2

证明:如图(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形ABCD.
(1)在图中作出△CDB沿对角线BD所在直线对折后的△C′DB,C点的对应点为C′(用尺规作图,保留作图痕迹,简要写明作法,不要求证明);
(2)设C′B与AD的交点为E.
①若DC=3cm,BC=6cm,求△BED的面积;
②若△BED的面积是矩形ABCD的面积的
1
3
,求
DC
BC
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD中,AB=12cm,BC=6cm,点M沿AB方向从A向B以2cm/秒的速度移动,点N从D沿DA方向以1c精英家教网m/秒的速度移动,如果M、N两点同时出发,移动的时间为x秒(0≤x≤6).
(1)当x为何值时,△MAN为等腰直角三角形?
(2)当x为何值时,有△MAN∽△ABC?
(3)爱动脑筋的小红同学在完成了以上联系后,对该问题作了深入的研究,她认为:在M、N的移动过程中(N不与D、A重合,M不与A、B重合),以A、M、C、N为顶点的四边形面积是一个常数.她的这种想法对吗?请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD和点P,当点P在边BC上任一位置(如图①所示)时,易证得结论:PA2+PC2=PB2+PD2
以下请你探究:当P点分别在图②、图③中的位置时,即P在矩形ABCD的内部和外部时,线段PA2,PB2,PC2,PD2又有怎样的数量关系?请你写出对上述两种情况的探究结论,并证明图②(P在矩形ABCD的内部)的结论.

答:对图②的探究结论为
PA2+PC2=PB2+PD2
PA2+PC2=PB2+PD2
,对图③的探究结论为
PA2+PC2=PB2+PD2
PA2+PC2=PB2+PD2

查看答案和解析>>

同步练习册答案