精英家教网 > 初中数学 > 题目详情

已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(3)当-3<x<-1时,求y的取值范围.

解:(1)∵反比例函数(k为常数,k≠0)的图象经过点A(2,3),
∴把点A的坐标代入解析式,得,解得,k=6。
∴这个函数的解析式为:
(2)∵反比例函数解析式,∴6=xy。
分别把点B、C的坐标代入,得
(-1)×6=-6≠6,则点B不在该函数图象上;
3×2=6,则点C中该函数图象上。
(3)∵k>0,∴当x<0时,y随x的增大而减小。
∵当x=-3时,y=-2,当x=-1时,y=-6,
∴当-3<x<-1时,-6<y<-2。

解析试题分析:(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值。
(2)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于6时,即该点在函数图象上。
(3)根据反比例函数图象的增减性解答问题。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:如图,正比例函数的图象与反比例函数的图象交于点
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?
(3)M(m,n)是反比例函数图像上的一动点,其中0<m<3,过M作直线MB‖x轴交y轴于点B。过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;
(4)探索:x轴上是否存在点P,使ΔOAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

定义:如图,若双曲线与它的其中一条对称轴相交于两点A,B,则线段AB的长称为双曲线的对径.

(1)求双曲线的对径;
(2)若某双曲线对径是.求k的值;
(3)仿照上述定义,请你定义双曲线的对径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数 与反比例函数的图象交于点 和,与轴交于点.(1)           ,            

(2)根据函数图象可知,当 时,的取值范围是                   
(3)过点轴于点,点是反比例函数在第一象限的图象上一点,设直线与线段交于点,当时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y1=x+1的图像与反比例函数(k为常数,且k≠0)的图像都经过点A(m,2).

(1)求点A的坐标及反比例函数的表达式;
(2)结合图像直接比较:当时,的大小。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,一次函数(k≠0)的图象与反比例函数(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且

(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若SAOB=4.

(1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川泸州8分)如图,已知函数与反比例函数(x>0)的图象交于点A.将的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C.

(1)求点C的坐标;
(2)若,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面现成的,其它三个面必须用刀切3次才能切出来,那么,要把一个正方体分割成27个小正方体,至少需要要刀切       次,分割成64个小正方体,至少需要用刀切       次。

查看答案和解析>>

同步练习册答案