精英家教网 > 初中数学 > 题目详情

如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则MN的长为


  1. A.
    12cm
  2. B.
    12.5cm
  3. C.
    数学公式cm
  4. D.
    13.5cm
C
分析:根据图形折叠前后图形不发生大小变化得出∠MWE=∠AWM=90°,进而得出∠DAE=∠DAE,再证明△NFM≌△ADE,然后利用勾股定理的知识求出MN的长.
解答:作NF⊥AD,垂足为F,连接AE,NE,

∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,
∴∠D=∠AHM=90°,∠DAE=∠DAE,
∴△AHM∽△ADE,
∴∠AMN=∠AED,
又∵AD=NF,∠NFM=∠D=90°,
∴△NFM≌△ADE(AAS),
∴FM=DE=CD-CE=4cm,
又∵在Rt△MNF中,FN=12cm,
∴根据勾股定理得:MN==4
故选C.
点评:此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为(  )
A、-
2
3
B、-
1
2
C、-2
D、-
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将边长为
2
的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是(  )
A、
2
B、
1
2
C、1
D、
1
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将边长都为1cm的正方形按如图所示摆放,点A1、A2、A3、A4分别是正方形的中心,则前5个这样的正方形重叠部分的面积和为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是


  1. A.
    16
  2. B.
    12
  3. C.
    8
  4. D.
    4

查看答案和解析>>

同步练习册答案