精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCDEFABE,交CDFEP平分∠AEFFP平分∠CFE,直线MN经过点P并与ABCD分别交于点MN.

(1)如图①,求证:EM+FNEF

(2)如图②,(1)的结论是否成立?若成立,请证明;若不成立,直接写出EMFNEF三条线段的数量关系.

【答案】(1)证明见解析;(2)不成立,FNEMEF.

【解析】

1)如图1(见解析),在EF上截取,易证,由三角形全等的性质得,由,再由邻补角定义可得,则,从而可证,由三角形全等的性质得,则

2)如图2(见解析),延长EPCDH,由,结合角平分线的定义得,则,根据三角形全等的性质得;又可证,根据三角形全等的性质得,故.

1)如图1,在EF上截取

平分平分

(两条直线平行,同旁内角互补)

(邻补角)

中,

2)题(1)的结论不成立

EMFNEF三条线段的数量关系是:,理由如下:

如图2延长EPCDH

(两条直线平行,同旁内角互补)

平分平分

中,

(两直线平行,内错角相等)

中,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBCBEAC,垂足分别为点DEADBE交于点FBF=AC ABE=22°,则∠CAD的度数是________°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,对角线ACBD相交于点OECD中点,连结OE.过点CCFBD交线段OE的延长线于点F,连结DF.求证:

(1)ODE≌△FCE

(2)四边形ODFC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题)如图1,在RtABC中,∠ACB90°ACBC,过点C作直线l平行于AB.∠EDF90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DFAC交于点P,研究DPDB的数量关系.

(探究发现)(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DPDB,请写出证明过程;

(数学思考)(2)如图3,若点PAC上的任意一点(不含端点AC),受(1)的启发,这个小组过点DDGCDBC于点G,就可以证明DPDB,请完成证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列出下列问题中的函数关系式,并判断它们是否为反比例函数.

(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;

(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;

(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中, AB=11 AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 交于点 D ,过点 D 分别作 DEAB DFAC ,垂足分别为 E F ,则 BE 的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC 在平面直角坐标系中,点 ABC 的坐标分别为 A-2,4),B4,2),C2-1.

)请在平面直角坐标系内,画出ABC 关于 x 轴的对称图形A1B1C1,其中,点 ABC 的对应点分别为A1B1C1

)请写出点C2-1)关于直线m(直线m上格点的横坐标都为-1)对称的点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一张长方形纸片ABCD中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.

(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;

(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;

(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,按图示方式将两张纸片任意叠合后,判断重叠四边形的形状,并证明;

(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图像与正比例函数的图像都经过点,点在反比例函数的图像上,点在正比例函数的图像上.

1)求此正比例函数的解析式;

2)求线段AB的长;

3)求PAB的面积.

查看答案和解析>>

同步练习册答案