£¨10·Ö£©ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ
Ϊ½â·½³Ì (x2£­1)2£­5 (x2£­1)£«4£½0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2£­1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉè x2£­1£½y£¬ÄÇôԭ·½³Ì¿É»¯Îª  y2£­5y£«4£½0£¬½âµÃy1£½1£¬y2£½4£®
µ±y£½1ʱ£¬x2£­1£½1£¬¡àx2£½2£¬¡àx£½¡À£»µ±y£½4ʱ£¬x2£­1£½4£¬¡àx2£½5£¬¡àx£½¡À£¬
¹ÊÔ­·½³ÌµÄ½âΪ  x1£½£¬x2£½£­£¬x3£½£¬x4£½£­£®
ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»
ÇëÀûÓû»Ôª·¨½â·½³Ì£®(x 2£­x)2 £­ 4 (x 2£­x)£­12£½0    

Éè x2£­x£½y£¬ÔòÔ­·½³Ì¿É»¯Îª  y2£­4y-12£½0£¬½âµÃy1£½6£¬y2£½-2£®
µ±y£½6ʱ£¬x2£­x£½6£¬¡àx2-x-6£½0£¬¡àx1£½3£¬x2=-2£»
µ±y£½-2ʱ£¬x2£­x£½-2£¬¡àx2-x+2£½0£¬¡ß¡÷£½(-1)2-4¡Á1¡Á2=-7£¼0£¬¡àÔ­·½³ÌÎÞʵÊý¸ù.
¡àÔ­·½³ÌµÄ½âΪ  x1£½3£¬x2£½£­2

½âÎö

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ
Ϊ½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2-1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉèx2-1=y£¬ÄÇôԭ·½³Ì¿É»¯Îªy2-5y+4=0£¬½âµÃy1=1£¬y2=4£®µ±y=1ʱ£¬x2-1=1£¬¡àx2=2£¬¡àx=¡À
2
£»µ±y=4ʱ£¬x2-1=4£¬¡àx2=5£¬¡àx=¡À
5
£¬¹ÊÔ­·½³ÌµÄ½âΪx1=
2
£¬x2=-
2
£¬x3=
5
£¬x4=-
5
£®
ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»ÇëÀûÓû»Ôª·¨½â·½³Ì£®£¨x2-x£©2-4£¨x2-x£©-12=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨10·Ö£©ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ

Ϊ½â·½³Ì (x2£­1)2£­5 (x2£­1)£«4£½0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2£­1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉè x2£­1£½y£¬ÄÇôԭ·½³Ì¿É»¯Îª  y2£­5y£«4£½0£¬½âµÃy1£½1£¬y2£½4£®

µ±y£½1ʱ£¬x2£­1£½1£¬¡àx2£½2£¬¡àx£½¡À£»µ±y£½4ʱ£¬x2£­1£½4£¬¡àx2£½5£¬¡àx£½¡À£¬

¹ÊÔ­·½³ÌµÄ½âΪ  x1£½£¬x2£½£­£¬x3£½£¬x4£½£­£®

ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»

ÇëÀûÓû»Ôª·¨½â·½³Ì£®(x 2£­x)2 £­ 4 (x 2£­x)£­12£½0    

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ
Ϊ½â·½³Ì (x2£­1)2£­5 (x2£­1)£«4£½0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2£­1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉè x2£­1£½y£¬ÄÇôԭ·½³Ì¿É»¯Îª  y2£­5y£«4£½0£¬½âµÃy1£½1£¬y2£½4£®
µ±y£½1ʱ£¬x2£­1£½1£¬¡àx2£½2£¬¡àx£½¡À£»µ±y£½4ʱ£¬x2£­1£½4£¬¡àx2£½5£¬¡àx£½¡À£¬
¹ÊÔ­·½³ÌµÄ½âΪ  x1£½£¬x2£½£­£¬x3£½£¬x4£½£­£®
ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»
ÇëÀûÓû»Ôª·¨½â·½³Ì£®(x 2£­x)2 £­ 4 (x 2£­x)£­12£½0    

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012½ìɽ¶«Ê¡ÎÞé¦ÏØʮУ¾ÅÄ꼶ÉÏѧÆÚÆÚÖÐÁª¿¼Êýѧ¾í ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ
Ϊ½â·½³Ì (x2£­1)2£­5 (x2£­1)£«4£½0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2£­1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉè x2£­1£½y£¬ÄÇôԭ·½³Ì¿É»¯Îª  y2£­5y£«4£½0£¬½âµÃy1£½1£¬y2£½4£®
µ±y£½1ʱ£¬x2£­1£½1£¬¡àx2£½2£¬¡àx£½¡À£»µ±y£½4ʱ£¬x2£­1£½4£¬¡àx2£½5£¬¡àx£½¡À£¬
¹ÊÔ­·½³ÌµÄ½âΪ  x1£½£¬x2£½£­£¬x3£½£¬x4£½£­£®
ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»
ÇëÀûÓû»Ôª·¨½â·½³Ì£®(x 2£­x)2 £­ 4 (x 2£­x)£­12£½0    

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸