精英家教网 > 初中数学 > 题目详情

【题目】如图,在△PAB中,∠APB=120°,M,N是AB上两点,且△PMN是等边三角形,求证:BMPA=PNBP.

【答案】证明:∵△PMN为等边三角形, ∴∠PMN=∠PNM=∠MPN=60°,
∴∠BMP=∠PNA=120°.
∵∠BPA=120°,
∴∠BPM+∠APN=60°.
在△BMP中,∠B+∠BPM=60°,
∴∠B=∠NPA,
∴△BMP∽△PNA,

∴BMPA=PNBP
【解析】根据所证的条件分析,本题需要证明△BMP∽△PNA求解;通过证明∠B=∠APN,∠BPM=∠A,即可得出△BMP和△PNA相似.解题时要注意选择适宜的判定定理.
【考点精析】本题主要考查了等边三角形的性质和相似三角形的判定与性质的相关知识点,需要掌握等边三角形的三个角都相等并且每个角都是60°;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题:
为祝贺北京成功获得2022年冬奥会主办权,某工艺品厂准备生产纪念北京申办冬奥会成功的“纪念章”和“冬奥印”.生产一枚“纪念章”需要用甲种原料4盒,乙种原料3盒;生产一枚“冬奥印”需要用甲种原料5 盒,乙种原料10 盒.该厂购进甲、乙两种原料分别为20000盒和30000盒,如果将所购进原料正好全部都用完,那么能生产“纪念章”和“冬奥印”各多少枚?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若平面直角坐标系中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.

(1)若动点P从坐标点M(1,1)出发,按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,则点N的坐标为 , 点G的坐标为
(2)若动点P从坐标原点出发,先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到点O.当△OBC∽△MNG(在(1)中的三角形).且相似比为2:1时,请你直接写出“平移量”m , n , q
(3)在(1)、(2)的前提下,请你在平面直角坐标系中画出△OBC与△MNG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC、AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,对角线ACBD相交于点O , 且AC=6cm,BD=8cm,动点PQ分别从点BD同时出发,运动速度均为1cm/s,点P沿BCD运动,到点D停止,点Q沿DOB运动,到点O停止1s后继续运动,到点B停止,连接APAQPQ . 设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).
(1)填空:AB=cm,ABCD之间的距离为cm;
(2)当4≤x≤10时,求yx之间的函数解析式;
(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始以2cm/秒的速度移动,点Q沿DA边从D以1cm/秒的速度移动,若P、Q同时出发,用t表示移动时间(0≤t≤6),求当t何值时,△APQ与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣ x﹣ 与x轴交于点A,与y轴交于点C,抛物线y=ax2 x+c(a≠0)经过A,B,C三点.

(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;
(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;
(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题做法全校学生中进行了抽样调查,根据调查结果绘制城如图所示的两个不完整的统计图,请结合图中信息解决下列问题:

(1)本次调查所得数据的众数是部,中位数是部,扇形统计图中“1部”所在扇形的圆心角为度.
(2)请将条形统计图补充完整;
(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,则他们选中同一名著的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y= 在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y= 的图象于点M,△AOM的面积为3.

(1)求反比例函数的解析式;
(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y= 的图象上,求t的值.

查看答案和解析>>

同步练习册答案