精英家教网 > 初中数学 > 题目详情
如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E.
(1)求证:DE是⊙O的切线.
(2)若OB=5,BC=6,求CE的长.
(1)证明:连接OD交BC于F;
∵D为弧BC的中点,
∴OD⊥BC,
∵AB为直径,
∴∠ACB=90°;
又∵DE⊥AC,
∴∠CED=∠ECF=∠CFD=90°,
∴∠FDE=90°,即OD⊥DE;
又∵OD为⊙O的半径,
∴DE是⊙O的切线.

(2)∵OD⊥BC,BC=6,
∴BF=CF=3,
在Rt△OBF中,OB=5,BF=3,
∴OF=4,
∴DF=OD-OF=1;
又∵四边形DECF是矩形,
∴CE=DF=1.
答:CE的长是1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
(1)求证:DB为⊙O的切线.
(2)若AD=1,PB=BO,求弦AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求
BC
的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,平行四边形ABCD的对角线AC,BD交于点P,E为BC的中点,过E点的圆O与BD相切于点P,圆O与直线AC,BC分别交于点F,G.
(1)求证:△PCD△EPF;
(2)如果AB=AD,AC=6,BD=8(如图2).求圆O的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心,5为半径的⊙O与OA、OB相交.
求证:AB是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB切⊙O于点B,OA=2
3
,AB=3,弦BCOA,则劣弧BC的弧长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,A为⊙O的弦EF上的一点,OB是和这条弦垂直的半径,垂足为H,BA的延长线交⊙O于点C,过点C作⊙O的切线与EF的延长线相交于点D.
(1)求证:DA=DC;
(2)当DF:EF=1:8,且DF=
2
时,求AB•AC的值;
(3)将图1中的EF所在直线往上平行移动到⊙O外,如图2的位置,使EF与OB,延长线垂直,垂足为H,A为EF上异于H的一点,且AH小于⊙O的半径,AB的延长线交⊙O于C,过C作⊙O的切线交EF于D.试猜想DA=DC是否仍然成立?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA中点,连接PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连接DF交AB于点G,则PE的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)先化简,再求值:(
2
a-1
-
1
a+1
)÷
1
a+1
,其中a=
2
+1;
(2)请你类比一条直线和一个圆的三种位置关系,在图①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.

查看答案和解析>>

同步练习册答案