精英家教网 > 初中数学 > 题目详情
19.销售公司购进2000千克的某种商品,购进价格为50元/千克,物价部门规定其销售单价不得高于80元/千克,也不得低于50元/千克,公司经过市场调查发现:销售单价定为80元/千克时,每天可销售200千克;单价每降低1元,每天可多销售20千克.设销售单价为x元,每天可获利润为y元.
(1)求y与x间的函数关系式;
(2)单价定为多少元时商场每天可获得最高利润?最高利润是多少?

分析 (1)根据总利润=单件利润×销售量可得;
(2)将(1)中函数关系式配方成顶点式,根据二次函数的性质即可得.

解答 解:(1)根据题意知,y=(x-50)[200+20(80-x)]=-20x2+2800x-90000;

(2)∵y=-20x2+2800x-90000=-20(x-70)2+8000,且50≤x≤80,
∴当x=70时,y最大=8000,
答:单价定为70元时商场每天可获得最高利润,最高利润是8000.

点评 本题主要考查二次函数的应用,理解题意得出相等关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,正方形ABCD中,AB=8,AE=6,EF∥AB,连接BE,连接对角线AC交EF于G,交BE于O.
(1)如图(1)所示,直接写出△AOE相似的三角形,不需证明;
(2)求图(1)中OG的长;
(3)如图(2)所示,若点P是线段CG的中点,试判断△EPB的形状,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某家禽养殖场,用总长为80m的围栏靠墙(墙长为20m)围成如图所示的三块面积相等的矩形区域,设AD长为xm,矩形区域ABCD的面积为ym2
(1)请直接写出GH的长(用含x的代数式表示)
(2)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC中,点D在BC边上,有下列三个关系式:
①∠BAC=90°,②$\frac{BD}{AD}$=$\frac{AD}{DC}$,③AD⊥BC.
选择其中两个式子作为已知,余下的一个作为结论,写出已知,求证,并证明.
已知:
求证:
证明:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内
(1)求点A的坐标
(2)如图,将△OAB沿O到A的方向平移4个单位至△O′A′B′的位置,即AA′=4,求点B′的坐标
(3)如图,将△OAB沿O到A的方向平移n个单位至△O′A′B′的位置,若平移后的B′点横坐标为2017,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在证明三角形内角和定理时,小明的想法是把三个角凑到C处,他过点C作直线CD∥AB,请你按照他的想法在图中作出直线CD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD为斜边AB上的中线.
(1)如图1,AE平分∠CAB交BC于E,交CD于F,若DF=2,求AC的长;
(2)将图1中的△ADC绕点D顺时针旋转一定角度得到△ADN,如图2,P,Q分别为线段AN,BC的中点,连接AC,BN,PQ,求证:BN=$\sqrt{2}$PQ;
(3)如图3,将△ADC绕点A顺时针旋转一定角度到△AMN,其中D的对应点是M,C的对应点是N,若B,M,N三点在同一直线上,H为BN中点,连接CH,猜想BM,MN,CH之间的数量关系,请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)计算:($\sqrt{24}$-$\sqrt{2}$)-($\sqrt{8}$+$\sqrt{6}$);
(2)因式分解:x2-3x-18.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,AB∥CD,MG平分∠AGF,NH平分∠EHD,那么GM∥HN,请说明理由.

查看答案和解析>>

同步练习册答案