精英家教网 > 初中数学 > 题目详情

【题目】阅读理解:表示不大于x的最大整数,例

1____________

2x的取值范围______

3)接写出方程的解.

【答案】(1)8,-3;(2);(3) 0,,2.

【解析】

1)根据[x]表示不大于x的最大整数即可求解;

2)结合题目给出[x]的定义,可以判断[x]=2中,x2的大小关系;

3)结合题目给出[x]的定义,可以判断[2x]=x2中,2xx2的大小关系,从而列出不等式组,确定x的范围,最后求出x的值.

1)小于8.2的最大整数为8,小于最大的整数为﹣3

故答案为:8;﹣3

2)∵[x]表示不大于x的最大整数,∴2x3

故答案为:2x3

3)由题意可得,解得:0x2

x2为整数,∴x=02

方程[2x]=x2的解为:02

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AB=8,点P在边CD上,tanPBC=,点Q是在射线BP上的一个动点,过点QAB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.

1)如图1,当点R与点D重合时,求PQ的长;

2)如图2,试探索: 的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;

3)如图3,若点Q在线段BP上,设PQ=xRM=y,求y关于x的函数关系式,并写出它的定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.

请根据图表中提供的信息,解答下列问题:

(1)图表中m=________,n=________;

(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为________人;

(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用A,B,C表示)和1位女同学(用D表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB为⊙O的直径,⊙OAC的中点D,DEBC于点E.

(1)求证:DE为⊙O的切线;

(2)DE=2,tanC=,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.

1)请解释图中点D的横坐标、纵坐标的实际意义;

2)求线段AB所表示的x之间的函数表达式;

3)当该产品产量为多少时,获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分线交 BC 于点 D,交AC 于点 E.

(1)判断 BE △DCE 的外接圆⊙O 的位置关系,并说明理由;

(2) BE=,BD=1,求△DCE 的外接圆⊙O 的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AB=8,点P在边CD上,tanPBC=,点Q是在射线BP上的一个动点,过点QAB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.

1)如图1,当点R与点D重合时,求PQ的长;

2)如图2,试探索: 的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;

3)如图3,若点Q在线段BP上,设PQ=xRM=y,求y关于x的函数关系式,并写出它的定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).

(1)请在图中,画出ABC向左平移6个单位长度后得到的△A1B1C1

(2)以点O为位似中心,将ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

同步练习册答案