【题目】已知A、B两地相距300千米,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后,速度不变,按原路返回.设两车行驶的时间是x小时,离开A地的距离是y千米,如图是y与x的函数图象.
(1)甲车的速度是 ,乙车的速度是 ;
(2)甲车在返程途中,两车相距20千米时,求乙车行驶的时间.
【答案】(1)100千米/小时,60千米/小时;(2)乙车行驶的时间为小时或小时.
【解析】
(1)图象可得甲车3小时行驶300公里,乙车5小时行驶300公里,即可求速度;
(2)由图象可求乙车的函数关系式y乙=60x,甲车返回时的函数关系式:y甲=﹣100x+700(4≤x≤7),即可求两车相距20千米时,乙车行驶的时间.
解:(1)根据题意可得:甲车速度为:=100千米/小时,
乙车速度为:=60千米/小时;
故答案为:100千米/小时,60千米/小时.
(2)由图象可得乙车表示的函数图象关系式为:y乙=60x,
甲车返回时的函数图象关系式为:y甲=﹣100x+700(4≤x≤7),
∵甲,乙两车相距20千米,
∴|y甲﹣y乙|=20,
∴﹣100x+700﹣60x=20或﹣100x+700﹣60x=﹣20,
解得:x=或x=,
∴乙车行驶的时间为小时或小时.
科目:初中数学 来源: 题型:
【题目】小明为了检验两枚六个面分别刻有点数1、 2、3、4、5、6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20 00 0次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一种用于装修的人字形梯,合拢时,梯子的长为米,距调查,这种梯子在张角为时最安全.
(1)求梯子最安全时,梯子能达到的最大高度是多少?(精确到米)
(2)装修时,房顶距离地面米,一个人坐在梯子最顶端时,他的手臂能达到的最大高度比梯子最顶端高出米.要使装修正常进行,那么梯子张角至多为多少度?(精确到度)
(参考数据:,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作:如图,在正方形 ABCD 中,P 是 CD 上一动点(与 C,D 不重合),使三角板的直角顶点与点 P 重合,并且一条直角边始终经过点 B,另一直角边与正方形的某一边所在直线交于点 E.
(1)根据操作结果,画出符合条件的图形;
(2)观察所画图形,写出一个与△BPC 相似的三角形,并说明理由;
(3)当点 P 位于 CD 的中点时,直接写出(2)中两对相似三角形的相似比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,AB=AC,∠BAC=90°,D为△ABC外部一点,∠BDC=45°,点F在CD上且AF∥DB.
(1)如图①,求证:;
(2)如图②,将△BCD沿BC翻折得到△BCD1,过点B作BG⊥CD1,垂足为G,连接AG交CD于E,交BC于H.若AF=,∠BCD=15°,求AG的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。四位同学各自发表了下述见解:
甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;
乙:只要指针连续转六次,一定会有一次停在6号扇形;
丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;
丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。
其中,你认为正确的见解有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.
(1)求抛物线的解析式;
(2)点M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一点,当M到直线BC的距离最大时,求点M的坐标及MN+NB的最小值;
(3)在(2)中,点M到直线BC的距离最大时,连接OM交BC于点E,将原抛物线沿射线OM平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.
(1)画出将△ABC向右平移2个单位得到△A1B1C1.
(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2.
(3)在x轴上找一点P,满足点P到点C1与C2距离之和最小,并求出P点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com