精英家教网 > 初中数学 > 题目详情

阅读下面的文字,然后回答问题.

我们知道三角形的内角和为180°,我们可以利用这一结论求得四边形的内角和,如图,已知四边形ABCD,求四边形ABCD的内角和.

解:在四边形ABCD的内部任取一点O,连结AO,BO,CO,DO,则有四个三角形的ABO,BCO,CDO,DAO,其内角和共为:180°×4=720°.又∵∠1+∠2+∠3+∠4=360°,∴∠ABC+∠BCD+∠CDA+∠DAB=720°-360°=360°,即四边形的内角和为360°.

问题:(1)在上述解题过程中,运用了________数学思想.

(2)你能用上述方法,求出五边形的内角和吗?

(3)n边形的内角和是多少呢?

答案:略
解析:

(1)转化;(2)540°;(3)180°(n2)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则原方程可化为y2-5y+4=0①
解得y1=1,y2=4
当y=1时,x2-1=1,∴x2=2,x=±
2

当y=4时,x2-1=4,∴x2=5,x=±
5

∴原方程的解为x1=
2
,x2=-
2
,x3=
5
,x4=-
5

解方程:(1)(3x+5)2-4(3x+5)+3=0
(2)x4-10x2+9=0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

分析研究:先阅读下面的文字,然后完成后面的题目:著名数学家高斯10岁时老师出了一道数学题:1+2+3+4+…+100=?高斯很快得出结果5050,他是这样计算的:第1项和最后一项的和是1+100=101,第2项和倒数第2项的和是2+99=101,第3项和倒数第3项的和是3+98=101,…,在这个问题中,共有50个这样的和,所以有1+2+3+4+…+100=101×50=5050.
(1)利用字母n表示1+2+3+…+n=
n
2
(n+1)
n
2
(n+1)

(2)利用上面公式计算101+102+103+…+200
(3)计算:a+(a+d)+(a+2d)+…+(a+99d)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

分析研究:先阅读下面的文字,然后完成后面的题目:著名数学家高斯10岁时老师出了一道数学题:1+2+3+4+…+100=?高斯很快得出结果5050,他是这样计算的:第1项和最后一项的和是1+100=101,第2项和倒数第2项的和是2+99=101,第3项和倒数第3项的和是3+98=101,…,在这个问题中,共有50个这样的和,所以有1+2+3+4+…+100=101×50=5050.
(1)利用字母n表示1+2+3+…+n=______
(2)利用上面公式计算101+102+103+…+200
(3)计算:a+(a+d)+(a+2d)+…+(a+99d)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

分析研究:先阅读下面的文字,然后完成后面的题目:著名数学家高斯10岁时老师出了一道数学题:1+2+3+4+…+100=?高斯很快得出结果5050,他是这样计算的:第1项和最后一项的和是1+100=101,第2项和倒数第2项的和是2+99=101,第3项和倒数第3项的和是3+98=101,…,在这个问题中,共有50个这样的和,所以有1+2+3+4+…+100=101×50=5050.
(1)利用字母n表示1+2+3+…+n=______
(2)利用上面公式计算101+102+103+…+200
(3)计算:a+(a+d)+(a+2d)+…+(a+99d)

查看答案和解析>>

同步练习册答案