精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠MON,点AB分别在OMON边上,且OAOB

1)求作:过点AB分别作OMON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);

2)连接OD,若∠MON50°,则∠ODB   °

【答案】(1)见解析;(2)65.

【解析】

1)根据过直线上一点作直线垂线的方法作出垂线即可;

2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.

解:(1)如图,DADB即为所求垂线;

2)连接OD

DBONDAOM

∴∠OBD=∠OAD90°,∠MON50°

∴∠ADB180°50°130°

RtOBDRtOAD中,

RtOBDRtOADHL),

∴∠ODBADB65°

故答案为:65

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=CB,FAB延长线上一点,点EBC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一袋子中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋子中任取一个小球,对应的数字作为一个两位数的十位数;然后将小球放回袋子中并搅拌均匀,再任取一个小球,对应数字作为这个两位数的的个位数.
(1)用树状图或列表的方法,写出按照上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解不等式:2x54x+1)﹣3

2)解关于x的不等式:x5ax+4)(a≠1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线 经过坐标原点,且当 时, y随x的增大而减小.
(1)求抛物线的解析式;
(2)如下图,设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB x轴于点B, DC x轴于点C.

①当 BC=1时,直接写出矩形ABCD的周长;
②设动点A的坐标为(a, b),将矩形ABCD的周长L表示为a的函数,并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtAOB中,∠AOB90°,∠BAO30°,以AB为一边作等边ABE,作OA的垂直平分线MNAB的垂线AD于点D

1)连接BDOE.求证:BDOE

2)连接DEABF.求证:FDE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8米的钢管100根,还需要长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的.经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.

1)试问:把一根长为6米的钢管进行裁剪,有下面几种方法,

请完成填空(余料作废)

方法①:只裁成为0.8米的用料时,最多可裁7根;

方法②:先裁下12.5米长的用料,余下部分最多能裁成为0.8米长的用料 根;

方法③:先裁下22.5米长的用料,余下部分最多能裁成为0.8米长的用料1 根.

2)分别用(1)中的方法②和方法③各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料;

3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6米长的钢管与(2)中根数相同.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DEAC于点G,BE=2,三角形CEG的面积为13.5,下列结论:

①三角形ABC平移的距离是4; ②EG=4.5;

③AD∥CF; ④四边形ADFC的面积为6

其中正确的结论是( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)23﹣17﹣(﹣7)+(﹣16);

(2)-5+6÷(-2)×

(3)-36×

(4)﹣23+|5﹣8|+24÷(﹣3).

查看答案和解析>>

同步练习册答案