精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD中,E、F分别为边AD、DC上的点,且AE=FC,过F作FH⊥BE,交AB于G,过H作HM⊥AB于M,若AB=6,AE=2,则下列结论中:①∠BGF=∠CFB;②
2
DH=EH+FH;③
HM
BC
=
1
4
,其中结论正确的是(  )
分析:根据A、G、H、E四点共圆得出∠AEB=∠BGF,证△AEB≌△CFB,推出∠AEB=∠CFB,即可判断①;延长BE到Q,使EQ=FH,连接DQ,证△DFH≌△DEQ,推出DQ=DH,∠QDE=∠FDH,求出∠QDH=∠QDE+∠EDH=∠ADC=90°,得出△DQH是等腰直角三角形,由勾股定理得出QH=
2
DH,即可判断②;延长MH交CD于N,证△BHM∽△BEA,求出BM=3HM,设HM=a,BM=3a,证△HMG∽△BAE,求出GM=
1
3
HM=
1
3
a,证△HMG∽△HNF,推出
HM
GM
=
HN
NF
,代入得出
a
1
3
a
=
6-a
3a-2
,求出a,即可判断③.
解答:解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD=6,DC∥AB,
∵四边形ABCD是正方形,
∴∠A=∠C=90°,AB=BC,
∵FH⊥BE,
∴∠EHG=90°,
∴∠A+∠EHG=180°,
∴A、E、H、G四点共圆,
∴∠BGF=∠AEB,
在△EAB和△FCB中
AE=CF
∠A=∠C
AB=BC

∴△EAB≌△FCB(SAS),
∴∠CFB=∠AEB,
∵∠BGF=∠AEB,
∴∠NGF=∠CFB,∴①正确;
延长BE到Q,使EQ=FH,连接DQ,
∵DC∥AB,
∴∠FGB=∠DFH,
∵∠FGB=∠AEB,∠AEB=∠DEQ,
∴∠DFH=∠DEQ,
∵四边形ABCD是正方形,
∴∠ADC=90°,AD=DC,
∵CF=AE,
∴DF=DE,
在△DFH和△DEQ中
DF=DE
∠DFH=∠DEQ
FH=EQ

∴△DFH≌△DEQ(SAS),
∴DQ=DH,∠QDE=∠FDH,
∵∠ADC=90°,
∴∠QDH=∠QDE+∠EDH=∠FDH+∠EDH=∠ADC=90°,
即△DQH是等腰直角三角形,
由勾股定理得:QH=
2
DH,
即EH+FH=
2
DH,∴②正确;
延长MH交CD于N,
∵HM⊥AB,∠A=90°,
∴AD∥HM,
∴△BHM∽△BEA,
HM
AE
=
BM
AB

HM
2
=
BM
6

∴BM=3HM,
设HM=a,BM=3a,
∵HM⊥AB,
∴∠HMG=∠A=90°,
∵∠BGF=∠AEB,
∴△HMG∽△BAE,
HM
GM
=
AE
AB
=
2
6

∴GM=
1
3
HM=
1
3
a,
∵AB∥DC,
∴△HMG∽△HNF,
HM
GM
=
HN
NF

∵NF=CN-CF=BM-CF=3a-2,HN=MN-MH=AD--HM=6-a,HM=a,GM=
1
3
a,
a
1
3
a
=
6-a
3a-2

解得:a=
6
5

即HM=
6
5

∵BC=AB=6,
HM
BC
=
6
5
6
=
1
5
,∴③错误.
故选A.
点评:本题考查了正方形性质,全等三角形的性质和判定,等腰直角三角形的性质和判定,相似三角形的性质和判定,平行线性质和判定的应用,主要考查学生综合运用性质进行推理的能力,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案