精英家教网 > 初中数学 > 题目详情
如图所示,在△ABC中,AB=AC,AD⊥BC于D,E为AD上一点,且AE=BE,已知∠BAC=70°,求∠ABE和∠BEC的度数分别为( )

A.30°,120°
B.35°,140°
C.45°,135°
D.25°,150°
【答案】分析:首先根据等腰三角形的性质可知AD是BC的垂直平分线,得出∠ABE=∠BAD=35°.然后依题意知道∠BED是△ABE的外角可计算出∠BED的度数,又已知∠CED=70°,可求出∠BEC的值.
解答:解:∵在△ABC中,AB=AC,AD⊥BC于D,E为AD上一点,AE=BE,
∴AD是BC的垂直平分线,
∴AE=BE=EC,
又∵∠BAC=70°,
∴∠BAD=∠CAD=∠BAC=×70°=35°,
∴∠ABE=∠BAD=35°.
又∵∠BED是△ABE的外角,
∴∠BED=∠BAD+∠ABE=35°+35°=70°;同理可得
∠CED=70°,
∴∠BEC=∠BED+∠CED=70°+70°=140°.
故选B.
点评:本题考查的是等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系;熟练掌握并灵活运用这些知识是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案