【题目】如图,在平面直角坐标系中AD⊥BC,垂足为D,交y轴于点H,直线BC的解析式为y=-2x+4.点H(0,2),
(1)求证:△AOH≌△COB;
(2)求D点的坐标.
【答案】(1)详见解析;(2)F(,
)
【解析】
(1)由题意可得OB=OH,∠COB=∠AOH,利用对顶角的余角可得∠HAO=∠BCO,即可证△AOH≌△COB.
(2)利用(1)中得到的条件将直线AD解析式表示出来,联立直线BC解出D即可.
证明:(1)由y=-2x+4可求得OC=4,OB=OH=2,
∵∠AOH=∠COB=90°,
∴∠HAO+∠ABC=90°
∠BCO+∠ABC=90°
即 ∠HAO=∠BCO,
∴ △AOH≌△COB(AAS)
(2)由(1)得OA=4,即A(-4,0)
∵H(0,2),
∴于是求得直线AH解析式为:,
联立直线BC的解析式为y=-2x+4.可求得x=,y=
∴F(,
)
科目:初中数学 来源: 题型:
【题目】如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=2,AB=1,则△PAB周长的最小值是( )
A. 2+1 B.
+1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD为∠BAC的平分线,BM⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC与∠C的关系为( )
A.∠ABC=2∠CB.∠ABC=∠CC.
∠ABC=∠CD.∠ABC=3∠C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰Rt△ABC,点D为斜边AB上的中点,点E在线段BD上,连结CD,CE,作AH⊥CE,垂足为H,交CD于点G,AH的延长线交BC于点F.
(1)求证:△ADG≌△CDE.
(2)若点H恰好为CE的中点,求证:∠CGF=∠CFG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校有2000名学生,为了解全校学生的上学方式,我校数学兴趣小组在全校随机抽取了150名学生进行抽样调查。整理样本数据,得到下列图表:
(1)若150名学生都在同一个年级抽取,这样的抽样是否合理?_______(填“是”或“否”);
(2)根据调查结果,估计全校2000名学生上学方式的情况:步行______人;骑车_____人;乘公共交通工具_______人; 乘私家车_____人;其它_______人,并绘制成条形统计图;
(3)数学兴趣小组结合调查获取的信息,向学校提出了一些建议。如:骑车上学的学生数约占全校的34%,建议学校合理安排自行车停车场地。请你结合上述统计的全过程,再提出一条合理化建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,( )
A. 若2AD>AB,则3S1>2S2 B. 若2AD>AB,则3S1<2S2
C. 若2AD<AB,则3S1>2S2 D. 若2AD<AB,则3S1<2S2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com