精英家教网 > 初中数学 > 题目详情
已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.
(1)∵抛物线的顶点为(0,4),
∴可设抛物线解析式为y=ax2+4,
又∵抛物线过点(2,0),
∴0=4a+4,解得a=-1,
∴抛物线解析式为y=-x2+4;

(2)①如图,连接CE,CD.
∵OD是⊙C的切线,∴CE⊥OD.
在Rt△CDE中,∠CED=90°,CE=AC=2,DC=4,
∴∠EDC=30°,
∴在Rt△CDO中,∠OCD=90°,CD=4,∠ODC=30°,
∴OC=
4
3
3

∴当直线OD与以AB为直径的圆相切时,k=OC=
4
3
3


②存在k=2
2
,能够使得点O、P、D三点恰好在同一条直线上.理由如下:
设抛物线y=-x2+4向右平移k个单位后的解析式是y=-(x-k)2+4,它与y=-x2+4交于点P,
由-(x-k)2+4=-x2+4,解得x1=
k
2
,x2=0(不合题意舍去),
当x=
k
2
时,y=-
1
4
k2+4,
∴点P的坐标是(
k
2
,-
1
4
k2+4).
设直线OD的解析式为y=mx,把D(k,4)代入,
得mk=4,解得m=
4
k

∴直线OD的解析式为y=
4
k
x,
若点P(
k
2
,-
1
4
k2+4)在直线y=
4
k
x上,得-
1
4
k2+4=
4
k
k
2

解得k=±2
2
(负值舍去),
∴当k=2
2
时,O、P、D三点在同一条直线上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=
1
2
x2+bx+c的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;
(2)设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;
(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,sin∠OAD=tan∠OBC=
2
3
,PC是抛物线的对称轴,且P(3,-3).
(1)求抛物线的函数表达式;
(2)求点D的坐标;
(3)求直线AD的函数表达式;
(4)PD与AD垂直吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(a011•玉溪)如图,函数y=-xa+bx+cx部分图象与x轴、y轴x交点分别为A(1,0),B(0,3),对称轴是x=-1,在下列结论中,错误x是(  )
A.顶点坐标为(-1,4)
B.函数的解析式为y=-x2-2x+3
C.当x<0时,y随x的增大而增大
D.抛物线与x轴的另一个交点是(-3,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,利用两面夹角为135°且足够长的墙,围成梯形围栏ABCD,∠C=90°,新建墙BCD总长为15m,则当CD=______m时,梯形围栏的面积最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有一直角梯形OABC,∠AOC=90°,ABOC,OC在x轴上,过A、B、C三点的抛物线表达式为y=-
1
18
x2+
4
9
x+10

(1)求A、B、C三点的坐标;
(2)如果在梯形OABC内有一矩形MNPO,使M在y轴上,N在BC边上,P在OC边上,当MN为多少时,矩形MNPO的面积最大?最大面积是多少?
(3)若用一条直线将梯形OABC分为面积相等的两部分,试说明你的分法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=
2
3
x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2010在y轴的正半轴上,B1,B2,B3,…,B2010在二次函数第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2009B2010A2010都为等边三角形,请计算△A2009B2010A2010的边长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=x2-4ax+4a2+a-1(a为常数),当a取不同的值时,其图象构成一个“抛物线系”.如图分别是当a=t1,a=t2,a=t3,a=t4时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为(  )
A.-3B.3C.-6D.9

查看答案和解析>>

同步练习册答案