精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠A=90°AB=8cmAC=6cm,若动点DB出发,沿线段BA运动到点A为止(不考虑DBA重合的情况),运动速度为2cm/s,过点DDEBCAC于点E,连接BE,设动点D运动的时间为xs),AE的长为ycm).

1)求y关于x的函数表达式,并写出自变量x的取值范围;

2)当x为何值时,△BDE的面积S有最大值?最大值为多少?

【答案】1(0x4);(2)当x=2时,SBDE最大,最大值为6cm2

【解析】

(1)根据已知条件DE∥BC可以判定△ADE∽△ABC;然后利用相似三角形的对应边成比例求得;最后用x、y表示该比例式中的线段的长度;

(2)根据∠A=90°得出S△BDE=BDAE,从而得到一个面积与x的二次函数,从而求出最大值;

1)动点D运动x秒后,BD=2x

又∵AB=8,∴AD=8-2x

DEBC,∴,∴

y关于x的函数关系式为(0x4)

2)解:SBDE==(0x4)

时,SBDE最大,最大值为6cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k0)的图象交于A(﹣1,a),B两点,与x轴交于点C.

(1)求此反比例函数的表达式;

(2)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣3x+3x轴、y轴分别交于AB两点,以AB为边在第一象限作正方形ABCD,点D在双曲线k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线y=3x分别与双曲线y=y=x>0)交于PQ两点,且OP=2OQ

(1)求k的值.

(2)如图2,若点A是双曲线y= 上的动点,ABx轴,ACy轴,分别交双曲线y=x>0)于点BC,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;

(3)如图3,若点D是直线y=3x上的一点,请你进一步探索在点A运动过程中,以点ABCD为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数图象的顶点在原点,经过点轴上,直线轴交于点

1)求二次函数的解析式;

2)点是抛物线上的点,过点轴的垂线与直线交于点,求证:

3)当时等边三角形时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.

(1)求sinEAC的值.

(2)求线段AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙,丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.

1)甲第一次传花时,恰好传给乙的概率是 

2)求经过两次传花,花恰好回到甲手中的概率;

3)经过三次传花,花落在丙手上的概率记作P1,落在丁手上的概率记作P2,则P1  P2(填“>”、“<”或者“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD,∠EAF45°

1)如图,当点EF分别在边BCCD上,连接EF,求证:EFBE+DF

童威同学是这样思考的,请你和他一起完成如下解答:证明:将ADF绕点A顺时针旋转90°,得ABG,所以ADF≌△ABG

2)如图,点MN分别在边ABCD上,且BNDM.当点EF分别在BMDN上,连接EF,探究三条线段EFBEDF之间满足的数量关系,并证明你的结论.

3)如图,当点EF分别在对角线BD、边CD上.若FC2,则BE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点EF分别在BCCD上,AEF是等边三角形,连接ACEF于点G,下列结论:①;②AG=GC;③BE+DF=EF;④.其中正确的是(

A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

同步练习册答案