精英家教网 > 初中数学 > 题目详情
13.下列运算正确的是(  )
A.$\sqrt{2}•\sqrt{3}$=$\sqrt{5}$B.($\frac{1}{2}$)-2=4C.3a2-2a2=1D.a6÷a3=a2

分析 根据$\sqrt{a}$$•\sqrt{b}$=$\sqrt{ab}$(a≥0,b≥0)进行计算可得A错误;根据负整数指数幂a-p=$\frac{1}{{a}^{p}}$(a≠0,p为正整数)可得B正确;根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得C错误;根据同底数幂的除法法则:底数不变,指数相减可得D错误.

解答 解:A、$\sqrt{2}$•$\sqrt{3}$=$\sqrt{6}$,故原题计算错误;
B、($\frac{1}{2}$)-2=4,故原题计算正确;
C、3a2-2a2=a2,故原题计算错误;
D、a6÷a3=a3,故原题计算错误;
故选:B.

点评 此题主要考查了二次根式的乘法、负整数指数幂、合并同类项、同底数幂的除法,关键是掌握各计算法则和计算公式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.计算-2+|-3|=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算正确的是(  )
A.$\sqrt{8}-\sqrt{3}=\sqrt{5}$B.$\sqrt{4a}-\sqrt{9a}=-1$C.3$\sqrt{2}$-$\sqrt{2}$=3D.$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.-5的倒数为(  )
A.-5B.5C.-0.2D.0.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.化简或计算
(1)(-a)3(a32
(2)(2a2b)3÷(ab)2
(3)(-2016)0+$\root{3}{8}$-($\frac{1}{3}$)-1+($\sqrt{2}$)2
(4)(x+3y+2)(x-3y+2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在平面直角坐标系中,O为坐标原点,直线y=2ax+6与x轴的正半轴交于点B,与y轴交于点C,抛物线y=ax2-4ax+b经过B、C两点,与x轴交于另一点A.
(1)如图1,求a,b的值;
(2)如图2,点D在第一象限内的抛物线上,过点D作DE⊥BC于点E,作DG⊥x轴,交线段BC于点F,垂足为点G,若BE=2EF,求点D的坐标;
(3)如图3,在(2)的条件下,点P在第一象限的抛物线上,其横坐标为2t,PQ⊥x轴于点Q,R为OQ的中点,点H在线段DF上,DH=t,点M在RH的延长线上,∠RMB=45°,射线BM交射线FD于点N,当DN=2t时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:(1+$\sqrt{2}$)2+3(1+$\sqrt{2}$)(1-$\sqrt{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在3.1415926,$\sqrt{4}$,-π,-$\root{3}{27}$,$\sqrt{8}$,$\frac{22}{7}$,0.$\stackrel{•}{3}$$\stackrel{•}{1}$.这些数中,无理数的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.请写一个大于2小于4的无理数π.

查看答案和解析>>

同步练习册答案