精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是(
A.m
B.m>1
C.m<1
D.m 且m≠1

【答案】D
【解析】解:∵一元二次方程(m﹣1)x2+x+1=0有实数根,
∴△=1﹣4(m﹣1)≥0,且m﹣1≠0,
解得:m≤ 且m≠1.
故选D
【考点精析】根据题目的已知条件,利用一元二次方程的定义和求根公式的相关知识可以得到问题的答案,需要掌握只有一个未知数,并且未知数的项的最高系数为2的方程为一元二次方程;根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC,AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AEBD交于点F,

(1)如图1,若∠ACD=60°,则∠AFB=   ;如图2,若∠ACD=90°,则∠AFB=   ;如图3,若∠ACD=120°,则∠AFB=   

(2)如图4,若∠ACD=α,则∠AFB=   (用含α的式子表示);

(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFBα的有何数量关系?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A,B,O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的分式方程.

(1)若方程的增根为x=2,求a的值;

(2)若方程有增根,求a的值;

(3)若方程无解,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角ABC中,AB=6,BAC=45°,BAC的平分线交BC于点D,M,N分别是ADAB上的动点,则BM+MN的最小值是 ( )

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+x﹣2与x轴交于A,B两点,与y轴交于点C.

(1)求点A,点B和点C的坐标;
(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;
(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于下列各组条件,不能判定≌△的一组是

A. A=A′B=B′AB=A′B′

B. A=A′AB=A′B′AC=A′C′

C. A=A′AB=A′B′BC=B′C′

D. AB=A′B′AC=A′C′BC=B′C′

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣8mx+16m﹣1(m>0)与x轴的交点分别为A(x1 , 0),B(x2 , 0).
(1)求证:抛物线总与x轴有两个不同的交点;
(2)若AB=2,求此抛物线的解析式.
(3)已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2﹣8mx+16m﹣1(m>0)与线段CD有交点,请写出m的取值范围.

查看答案和解析>>

同步练习册答案