精英家教网 > 初中数学 > 题目详情

【题目】如图,已知函数 的图象与x轴,y轴分别交于点A、B,与函数的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数的图象于点C、D.

(1)求点M、点A的坐标;

(2)若OB=CD,求a的值,并求此时四边形OPCM的面积.

【答案】(1)M(2,2),A (6,0);(2)5

【解析】

试题(1)M在直线y=x的图象上,且点M的横坐标为2,

得到点M的坐标为(2,2),再把代入即可求得的值,则A的坐标即可求得,

先确定点坐标为,则 再表示出点坐标为

点坐标为,所以 然后解方程即可;根据四边形的面积等于

试题解析:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,

∴点M的坐标为(2,2),

M(2,2)代入y=x+b1+b=2,解得b=3,

∴一次函数表达式为

代入

A点的坐标为

(2)代入

轴,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了迎接运动会,某校八年级学生开展了短跑比赛。甲、乙两人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度

甲前一半的路程使用速度,另一半的路程使用速度;乙前一半的时间用速度,另一半的时间用速度

(1)甲、乙二人从A地到达B地的平均速度分别为;则___________,____________

(2)通过计算说明甲、乙谁先到达B地?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为15㎝和30㎝的两个部分,求:三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠ABC=45°,AHBC于点H,点DAH上的一点,且DH=HC,连接BD并延长BDAC于点E,连接EH.

(1)请补全图形;

(2)求证:△ABE是直角三角形;

(3)若BE=a,CE=b,求出SCEH:SBEH的值(用含有a,b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某县政府为了迎接八一建军节,加强军民共建活动,计划从花园里拿出1430盆甲种花卉和1220盆乙种花卉,搭配成A、B两种园艺造型共20个,在城区内摆放,以增加节日气氛,已知搭配A、B两种园艺造型各需甲、乙两种花卉数如表所示:(单位:盆)

(1)某校某年级一班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮忙设计出来.

(2)如果搭配及摆放一个A造型需要的人力是8人次,搭配及摆放一个B造型需要的人力是11人次,哪种方案使用人力的总人次数最少,请说明理由.

造型数量花

A

B

甲种

80

50

乙种

40

90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠A=22.5°,CD=8cm,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解一元二次不等式

请按照下面的步骤,完成本题的解答.

解: 可化为

(1)依据两数相乘,同号得正,可得不等式组① 或不等式组②________

(2)解不等式组①,得________

(3)解不等式组②,得________

(4)一元二次不等式 的解集为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=90°,A=30°,AB的垂直平分线分别交ABAC于点D,E.

(1)求证:AE=2CE;

(2)连接CD,请判断BCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画出函数的图象,利用图象求解下列问题:

(1)求方程的解;

(2)求不等式的解集;

(3)若,求的取值范围.

查看答案和解析>>

同步练习册答案