精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC//x轴,点P是直线AC下方抛物线上的动点.

(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

【答案】
(1)

解:∵点A(0,1).B(﹣9,10)在抛物线上,

∴抛物线的解析式为y= x2+2x+1


(2)

解:∵AC//x轴,A(0,1)

x2+2x+1=1,

∴x1=﹣6,x2=0,

∴点C的坐标(﹣6,1),

∵点A(0,1).B(﹣9,10),

∴直线AB的解析式为y=﹣x+1,

设点P(m, m2+2m+1)

∴E(m,﹣m+1)

∴PE=﹣m+1﹣( m2+2m+1)=﹣ m2﹣3m,

∵AC⊥EP,AC=6,

∴S四边形AECP

=S△AEC+S△APC

= AC×EF+ AC×PF

= AC×(EF+PF)

= AC×PE

= ×6×(﹣ m2﹣3m)

=﹣m2﹣9m

=﹣(m+ 2+

∵﹣6<m<0

∴当m=﹣ 时,四边形AECP的面积的最大值是

此时点P(﹣ ,﹣


(3)

解:∵y= x2+2x+1= (x+3)2﹣2,

∴P(﹣3,﹣2),

∴PF=yF﹣yP=3,CF=xF﹣xC=3,

∴PF=CF,

∴∠PCF=45°

同理可得:∠EAF=45°,

∴∠PCF=∠EAF,

∴在直线AC上存在满足条件的Q,

设Q(t,1)且AB=9 ,AC=6,CP=3

∵以C、P、Q为顶点的三角形与△ABC相似,

①当△CPQ∽△ABC时,

∴t=﹣4或t=﹣8(不符合题意,舍)

∴Q(﹣4,1)

②当△CQP∽△ABC时,

∴t=3或t=﹣15(不符合题意,舍)

∴Q(3,1)


【解析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m, m2+2m+1),表示出PE=﹣ m2﹣3m,再用S四边形AECP=S△AEC+S△APC= AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.
【考点精析】通过灵活运用相似三角形的应用,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为( )

A.
B.1
C.2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数y=x的图象交于点C(m,4).

(1)求m的值及一次函数y=kx+b的表达式;

(2)观察函数图象,直接写出关于x的不等式x<kx+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是(  )

A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分图形的面积为(
A.4π
B.2π
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.

已知:如图,AM,BN,CP△ABC的三条角平分线.

求证:AM、BN、CP交于一点.

证明:如图,设AM,BN交于点O,过点O分别作OD⊥BC,OF⊥AB,垂足分别为点D,E,F.

∵O∠BAC角平分线AM上的一点( )

∴OE=OF( )

同理,OD=OF.

∴OD=OE( )

∵CP∠ACB的平分线( )

∴OCP( )

因此,AM,BN,CP交于一点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:

甲林场

乙林场

购树苗数量

销售单价

购树苗数量

销售单价

不超过1000棵时

4元/棵

不超过2000棵时

4元/棵

超过1000棵的部分

3.8元/棵

超过2000棵的部分

3.6元/棵

设购买白杨树苗x棵,到两家林场购买所需费用分别为y(元)、y(元).
(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为元,若都在乙林场购买所需费用为元;
(2)分别求出y、y与x之间的函数关系式;
(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车间同时开始加工一批零件,从开始加工到加工完这批零件,甲车间工作了9小时,乙车间在中途停工一段时间维修设备,修好后马上按停工前的工作效率继续加工,直到与甲车间同时完成这批零件的加工任务为止,设甲、乙两车间各自加工零件的数量为y(个),甲车间加工的时间为x(时),yx之间的函数图象如图所示,下列说法其中正确的个数为(  )

①这批零件的总个数为1260个;

②甲车间每小时加工零件个数为80个;

③乙车间维修设备后,乙车间加工零件数量yx之间的函数关系式y=60x﹣120;

④乙车间维修设备用了2个小时

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案