精英家教网 > 初中数学 > 题目详情

一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各有多少个?

解:设白球有x个,红球有y个,
由题意得,
由第一个不等式得:3x<3y<6x,
由第二个个式子得,3y=60-2x,
则有3x<60-2x<6x,
∴7.5<x<12,
∴x可取8,9,10,11.
又∵2x=60-3y=3(20-y),
∴2x应是3的倍数,
∴x只能取9,
此时y==14.
答:白球有9个,红球有14个.
分析:设白球有x个,红球有y个,根据白球的个数比红球少,但白球的2倍比红球多,列出不等式,然后根据总数为60,列出方程,综合求解即可.
点评:本题考查了不等式与方程的综合运用,解答本题的关键是仔细审题,找到等量关系与不等关系,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一堆有红、白两种颜色的球各若干个,已知白球的个数比红球少,但白球的个数的二倍比红球多,若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么白球有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

一堆有红,白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的2倍比红球多,若把每个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么,白球有
9
9
个,红球有
14
14
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各有多少个?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一堆有红,白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的2倍比红球多,若把每个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么,白球有______个,红球有______个.

查看答案和解析>>

同步练习册答案