【题目】如图,射线AN上有一点B,AB=5,tan∠MAN=,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).
(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)
(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.
(3)当△AFD是轴对称图形时,直接写出t的值.
【答案】(1)AD=5t,DF=t+5.(2)当0<t<时,S=﹣6t2+10t.当t>时,S=6t2﹣10t.(3)t的值为或或.
【解析】
(1)利用勾股定理算出AD,表示出CB,即可表示出DF.
(2)分别讨论0<t<时和t>时,利用面积公式计算即可.
(3)分别讨论当DF=AD时的一种情况、当AF=DF时的两种情况.
解:(1)在Rt△ACD中,AC=3t,tan∠MAN=,
∴CD=4t.
∴AD=,
当点C在点B右侧时,CB=3t﹣5,
∴CF=CB.
∴DF=4t﹣(3t﹣5)=t+5.
(2)当0<t<时,S=(5﹣3t)4t=﹣6t2+10t.
当t>时,S=(3t﹣5)4t=6t2﹣10t.
(3)①如图1中,当DF=AD时,△ADF是轴对称图形.
则有5﹣3t﹣4t=5t,解得t=,
②如图2中,当AF=DF时,△ADF是轴对称图形.
作FH⊥AD.
∵FA=DF,
∴AH=DH=t,
由cos∠FDH=,可得,解得t=.
③如图3中,当AF=DF时,△ADF是轴对称图形.
作FH⊥AD.
∵FA=DF,
∴AH=DH=t,
由cos∠FDH=,可得,解得t=.
综上所述,满足条件的t的值为或或.
科目:初中数学 来源: 题型:
【题目】压岁钱由来已久,古称“厌胜钱”、“压祟钱”等.铛铛同学在2019年春节共收到10位长辈给的压岁钱,分别是:100元、200元、100元、50元、400元、300元、50元、100元、200元、400元.关于这组数据,下列说法正确的是( )
A.中位数是200元B.众数是100元
C.平均数是200元D.极差是300元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数,当x=1时,y=3;当x=3时,y=1,即当时,有,所以说函数是闭区间[1,3]上的“闭函数”.
(1)反比例函数y=是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;
(2)若二次函数y=是闭区间[1,2]上的“闭函数”,求k的值;
(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的表达式(用含m,n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试确定E点位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.
(1)求证:∠BAC=∠CBP;
(2)求证:PB2=PCPA;
(3)当AC=6,CP=3时,求sin∠PAB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是边AC的中点,点E,F在边AB上,当△DEF是等腰三角形,且底角的正切值是时,△DEF腰长的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,顶点是D,对称轴交x轴于点E.
(1)求抛物线的解析式;
(2)点P是抛物线在第四象限内的一点,过点P作PQ∥y轴,交直线AC于点Q,设点P的横坐标是m.
①求线段PQ的长度n关于m的函数关系式;
②连接AP,CP,求当△ACP面积为时点P的坐标;
(3)若点N是抛物线对称轴上一点,则抛物线上是否存在点M,使得以点B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出线段BN的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.
(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?
(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=300,求图中阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com