精英家教网 > 初中数学 > 题目详情
(2002•荆州)已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

【答案】分析:由平行四边形和性质知,AB∥CD?∠E=∠F,∠EBO=∠FDO,OB=OD?△EBPFDO?BE=DF,AB=CD?BE-AB=DF-CD即AE=CF.
解答:证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠E=∠F,∠EBO=∠FDO.
又∵OB=OD,
∴△EBO≌△FDO.
∴BE=DF.
又∵AB=CD,
∴BE-AB=DF-CD.
即AE=CF.
点评:本题利用了平行四边形的性质,全等三角形的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2002•荆州)已知一抛物线与x轴的交点是A(-1,0)、B(m,0)且经过第四象限的点C(1,n),而m+n=-1,mn=-12,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2002年湖北省荆州市中考数学试卷(解析版) 题型:解答题

(2002•荆州)已知一抛物线与x轴的交点是A(-1,0)、B(m,0)且经过第四象限的点C(1,n),而m+n=-1,mn=-12,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(09)(解析版) 题型:填空题

(2002•荆州)已知半径为4和的两圆相交,公共弦长为4,则两圆的圆心距为   

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(07)(解析版) 题型:解答题

(2002•荆州)已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

同步练习册答案